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Abstract

This paper discusses the identification and estimation of game-theoretic models, mainly fo-
cusing on sequential games of incomplete information. In most empirical games, researchers
cannot observe the exact order of actions played in the game and rely on the assumption of
simultaneous actions. My structural modeling generalizes an empirical game to encompass
simultaneous and sequential actions as special cases. I specify a sequential game allowing for
multiple players in each stage and multiple Perfect Bayesian Nash Equilibria, showing that the
structural parameters, including the payoff function parameters, the order of actions, and equi-
librium selection mechanism, are separately identified. The excluded regressor that affects the
variation of payoff functions but does not affect the order of actions is helpful to attain point
identification of structural parameters. Next, I consider a Sieve Minimum Distance (SMD) es-
timator of Ai and Chen (2003) for estimating structural parameters and verify its asymptotic
properties. The Monte Carlo simulations evaluate the performance of the proposed estimator
and provide numerical evidence of potential bias under the misspecified order of actions. The
empirical application with an entry game of Walmart and Kmart shows that retailers compete
sequentially in a significant portion of markets.
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1 Introduction

1.1 Motivation

This paper is an extension of the econometric approach to game-theoretic models, mainly focusing
on sequential games. I consider a classic sequential move game that a later mover can observe
the action of previous movers. Sequential games have been widely discussed in classical game
theory, especially in extensive form games (Kreps and Wilson (1982), Milgrom and Roberts (1982),
Fudenberg and Tirole (1991)). However, there are few empirical applications based on the model
of sequential games in previous literature. Instead, almost all empirical models assuming strategic
interactions among rational, forward-looking players use either a simultaneous game or a dynamic
discrete game. In this paper, I specify a structural model based on sequential games, which share
some properties with both simultaneous and dynamic discrete games but are fundamentally distinct
from these games.

The model I develop is a generalized sequential game, which is distinguished from other types
of games. First, the game is not a simultaneous game because due to asymmetric information sets
among players. Players consist of multiple groups, and sequentially choose their actions while each
group of players simultaneously make decisions. In a two-player sequential game, the second mover
decides after observing the first mover’s action while the first mover does not have information on
the rival’s response. Second, the game is not a dynamic discrete game because each player may
not necessarily have multiple decision nodes. In a dynamic discrete game, simultaneous actions
made by a group of players repeat for multiple periods. The sequential game model of the current
paper includes a one-shot game in which each player has a distinct decision node or a sequential
bargaining game between two groups of players as a special case. The setup, therefore, allows us to
see the effect of commitment in some particular types of empirical games. Each player maximizes
the expected profit based on the information set after observing the full history of actions made by
previous groups.1

The sequential game model I consider is also different from other empirical game models be-
cause the structure of decision nodes is not necessarily known to the researchers. In a sequential
entry game between two rivals, e.g. Walmart and Kmart, the order of actions may change across
games. The researcher can observe the final entry decisions made by firms but cannot precisely
know whether a game is simultaneous or not and who the first/second mover is. The probability
distribution of the order of actions conditional on observable covariates is a component of structural
parameters in my model.

Under similar assumptions as simultaneous games literature, I provide identification and es-
timation of structural parameters, including payoff function parameters, the equilibrium selection
mechanism, and the distribution of the order of actions, under the econometric specification of
sequential games. The asymptotic distribution of the functional of structural parameters is derived

1Note that the dynamic structure captured in this paper is up to a finite horizon dynamic game. The previous
literature on estimating dynamic games allow for infinite horizon: see Aguirregabiria and Mira (2002, 2007), Bajari,
Benkard, and Levin (2007), Pakes, Ostrovsky, and Berry (2007), and Pesendorfer and Schmidt-Dengler (2008).
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based on Ai and Chen (2003) and Chen and Pouzo (2009, 2015). Monte Carlo simulations and
the empirical application to the entry game of Walmart and Kmart highlight that the conventional
estimators without considering the order of actions may have a potential loss of precision.

The current paper contributes to the existing literature in several ways. First, I establish
semiparametric identification and estimation of structural parameters for a sequential game of
incomplete information considering both multiple equilibria and unobserved order of actions. The
structural model provides a general extension of the identification and estimation in simultaneous
games with incomplete information. The structural parameters include not only the payoff function
of players but also unobserved heterogeneity, including the distribution of the order of actions and
the equilibrium selection mechanism. The difficulty of identification comes from the unknown
order of actions that is observable to players but unobserved by econometricians. I show that
the number of heterogeneity types is finite, then separately identify the order of actions and the
equilibrium selection mechanism as well as the parametric payoff function parameters. To the best
of my knowledge, this paper is the first econometric approach to incomplete information sequential
games considering unobserved heterogeneity.

Second, the paper accommodates discrete type unobserved heterogeneity into the semipara-
metric estimation and inference on empirical games. I propose a Sieve Minimum Distance (SMD)
estimator of Ai and Chen (2003) for structural parameters using conditional moment restrictions
derived from the model. The structural parameters consist of parametric payoff function paramet-
ers and nonparametric probability distribution function of unobserved heterogeneity. Estimating
the parameters regarding unobserved heterogeneity is particularly essential to empirical games be-
cause the unobserved order of actions affects the estimates of payoff functions and the subsequent
counterfactual outcomes. I verify consistency and asymptotic normality of the estimator and derive
a valid confidence interval for parameters of interest.

Third, Monte Carlo simulations and an empirical application to the entry game between Wal-
mart and Kmart present a potential implementation of the model to various economic illustrations
with strategic interactions. I conduct numerical experiments to show the finite sample performance
of the suggested estimator. The analyses also highlight numerical evidence of asymptotic bias under
the misspecified order of actions. The result implies the benefit of using the proposed estimator
that is robust to the unknown order of actions. The empirical application revisits the entry game
between Walmart and Kmart discussed in Jia (2008). The new estimates based on the theoretical
results of this paper show that Walmart and Kmart’s entry decisions are more closely correlated
with each other. The estimated order of actions, which is a function of regional dummies, veri-
fies that each player is more likely to become the first mover at the counties in the vicinity of its
headquarters.

The suggested structural model of sequential games can also be adapted to various theoretical
and empirical topics, including firm entry, bargaining, matching, and dynamic discrete choice prob-
lems. In particular, the game-theoretic approach to analyze an oligopolistic market is common in
the industrial organization literature. The entry game is a classic example discussed by Bresnahan
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and Reiss (1990, 1991). More empirical applications of entry games include the competition among
retail and chain stores (Pinkse, Slade, and Brett (2002), Smith (2004), Holmes (2001, 2011), Davis
(2006), Jia (2008), Ellickson, Houghton, and Timmins (2013), Aradillas-lopez and Gandhi (2016)),
airline companies (Berry (1992), Ciliberto and Tamer (2009), Blevins (2015)), and video stores
(Seim (2006)). Note that most of the previous literature mentioned above provide results under
the simultaneous game assumption. However, a sequential game specification is sometimes more
natural because information between players may not be symmetric: players may not simultan-
eously observe the rival’s action without any difference in timing.

The applicability of sequential games is not limited to topics in entry games. The model can also
be applied to the industry-specific bargaining literature, including Gal-Or (1997), Ho (2009), and
Crawford and Yurukoglu (2012). The bargaining game between hospitals and insurers (Ho (2009))
is one example in which the strategic interactions between agents are essential to explain the market
structure. Ho (2009) suggests a sequential game between hospital groups and insurance plans. More
empirical topics include international relations, a tax/tariff competition between nations, or a price
competition between firms.

1.2 Previous Literature

There have been many empirical works based on game-theoretic models. Most of these papers
focused on identifying and estimating the payoff function in a simultaneous game, without specifying
the order of actions or asymmetric information between players. Bresnahan and Reiss (1990, 1991)
worked on the entry/exit model in oligopolistic markets. Berry (1992) applied the entry game to
the airline industry to figure out the effect of strategic interactions between firms on the decision of
airport presence. The following seminal papers include Tamer (2003), Ciliberto and Tamer (2009),
Bajari, Hong, and Ryan (2010), and Kline (2015), though these papers belong to the complete
information game literature.

The current paper relates to the literature on incomplete information games where each player
has private information not observed by other players. A flourishing line of research includes
Aradillas-lopez (2010), Bajari, Hong, Krainer, and Nekipelov (2010), Tang (2010), De Paula and
Tang (2012), Lewbel and Tang (2015), Wan and Xu (2014), Xiao (2018), and Aguirregabiria and
Mira (2019). Each of these papers studied the identification and estimation of incomplete inform-
ation games under various specifications. Most of the documents focused on nonparametric identi-
fication of the payoff function parameters. There are also various empirical applications assuming
an incomplete information game, e.g., Seim (2006), Sweeting (2009), Vitorino (2012). Though this
paper is also based on an incomplete information game, the model specification is distinct from
previous literature as I consider both simultaneous moves and sequential moves.

There are several papers considering the effect of unobserved heterogeneity in models of em-
pirical games. Kasahara and Shimotsu (2009), Arcidiacono and Miller (2011), and Hu and Shum
(2012) provided nonparametric identification of dynamic models with unobserved heterogeneity.
Based on the identification strategy, Grieco (2014), Igami and Yang (2016), and Aguirregabiria
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and Mira (2019) derived identification of empirical games with discrete type unobserved hetero-
geneity in player’s payoff functions. Particularly Aguirregabiria and Mira (2019) showed how to
separately identify payoff function parameters, equilibrium selection mechanism, and the distri-
bution of unobserved heterogeneity in a simultaneous game. The current paper shares a similar
model specification as Igami and Yang (2016) and Aguirregabiria and Mira (2019) in that the
source of unobserved heterogeneity has discrete support. But the identification strategy in this
paper is different from previous literature because the finite mixture approach used in Kasahara
and Shimotsu (2009) does not hold. A sequential game model violates the assumption of first-order
Markov property as the later mover’s action depends on the full history of previous mover’s actions.

The motivation of this paper is closely related to Einav (2010) and Blevins (2015). Both
articles discussed the identification and estimation of sequential games. Einav (2010) studied the
identification of a sequential game under the assumption of incomplete information and applied it
to analyze a release date timing game in the movie industry. Blevins (2015) derived identification of
a complete information sequential game when the unique Subgame Perfect Nash Equilibrium exists,
and the order of actions is unobservable to econometricians. In addition to these inspirational works,
the current paper’s setup involves multiple equilibria and a more generalized order of actions. The
valid estimation and inference method for structural parameters and verifying asymptotic properties
of the estimator are new in the sequential game literature.

In the estimation of structural parameters, I apply the nonparametric sieve method to estimate
the equilibrium selection mechanism and the distribution of the order of actions without relying on
parametric assumptions. The SMD estimator of Ai and Chen (2003) and the Sieve Wald statistic
of Chen and Pouzo (2015) fit the model setup. This paper verifies that the suggested estimation
and inference methods are valid for handling models in empirical games.

1.3 Summary of Contents

In Section 2, I introduce a general model that represents a sequential game and define an equilib-
rium concept based on Perfect Bayesian Nash Equilibria (PBNE). Section 3 provides identification
results. A necessary and sufficient condition of identification and some exclusion restrictions that
help satisfy the identification condition are discussed. Section 4 suggests a SMD estimator of the
structural parameters, following the identification result in Section 3. The asymptotic properties
of the suggested estimator are discussed in the same section. Section 5 is about Monte Carlo sim-
ulations and an empirical application to the entry game of Walmart and Kmart. The Monte Carlo
simulation part shows how sensitive the identification and estimation results are under misspecified
order of actions. Section 6 sums up everything with conclusion.
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2 The General Model

2.1 Basic Setting: Player, Action, and Payoff

Denote a sequential game by G ≡
{
It,A, {ui}i∈It

}To
t=1

, which consists of a number of stage games
indexed by t ∈ To ≡ {1, . . . , To}. The set of players is given by I ≡ {1, . . . , N}. For sequential
actions, I suppose To groups of players allocated by a specific order of actions o : I → To, which
may not be observed by econometricians. Under the given mapping o, the group t players are
assigned by It ≡ {i ∈ I|o (i) = t} with

⋃To
t=1 It = I, and O = (o (1) , . . . , o (N))′ is a vector of

assigned groups. nt ∈ {1, 2, . . . , N} is the number of players in group t. Assume that each player
has only one decision node. This section describes the game under a given order O ∈ O, where O
includes in total No possible orders.2

The action set of players is A = {a0, a1, . . . , aL}, which is finite and discrete. Every player has
the same L + 1 possible actions. AN defines the whole game’s action space. The action set fixes
a0 = 0 as a baseline action or an outside option. For example, the action space of an entry game
is A = {0, 1}, and every player decides whether or not to enter the market.

Next, let si ∈ A be the action of player i, and s−i ∈ AN−1 be the set of actions without si.
The set of actions selected by all players is s ≡ (s1, . . . , sN )′ ∈ RN . I use notation of subscripts
− and + to highlight the timing of decision making. Let so(i)− be a no(i)− ≡

∑o(i)−1
t=1 nt dimensional

history vector that consists of
{
sj
∣∣o (j) < o (i)

}
, and similarly so(i)+ includes no(i)+ ≡

∑To
t=o(i) nt − 1

actions of
{
sj
∣∣o (j) ≥ o (i)

}
\ {si} that are not realized when player i makes a decision. The history

vector is a common subset of the information set for all players in group t. For each player i,
s =

(
s
o(i)′
− , si, s

o(i)′
+

)′
.

Player i’s payoff is

ui (s,X,O, εi) = πi
(
si, s

o(i)
+ ,Jo(i);β

)
+ εi (si) ,

where πi is the structural part of the payoffs that are known up to a finite dimensional parameter
β ∈ B ⊆ Rdβ , and εi (si) : A → R is player i’s private information depending on her action si.
The realized value of εi ≡ (εi (a0) , . . . , εi (aL))′ is only observable to player i but the distribution
of εi is common knowledge for other players and econometricians. Jo(i) ≡

(
s
o(i)
− , X,O

)
is the

information set of player i, and X is a vector of observable covariates. The history vector so(i)− is
the main difference from a simultaneous game as the first-mover’s action is observed by the following
movers. The model encompasses the conventional approach to simultaneous games where T = 1 as
a special case, and the sequential game model of Einav (2010) where To = N for t = 1, . . . , N as
well.

Remark 2.1. The specification of nt > 1 not only generalizes simultaneous games but also enables
various economic applications. The bargaining games discussed by Ho (2009), Collard-Wexler,

2If the game has two players (N = 2), there are three possible orders: two sequential actions O = (1, 2)′ or
O = (2, 1)′, and one simultaneous actions O = (1, 1)′. In this case NO = 3. In general, the possible number of orders
follows the number of weak orderings for N players, or the ordered Bell numbers.
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Gowrisankaran, and Lee (2019) can be adapted to the generalized setup in my paper. For example,
Ho (2009) considered two groups of players: hospitals and insurance plans. The hospitals make
take-it-or-leave-it offers in the first stage, and insurance plans respond in the second stage. The
case of nt > 1 is considered because an empirical case may not be certainly declared as a pure
simultaneous or sequential game. For example, in entry games, researchers may observe the opening
dates for stores, but the observed order may not reflect the decision timing of players. The real-
world example is potentially located in the middle of a simultaneous and sequential game, and such
a case requires a more flexible specification of strategic interactions.

Remark 2.2. The information set Jo(i) assumes the incumbent’s action to be fully observed by
all entrants. The assumption does not necessarily hold in some economic applications: sequential
auctions in which entrants can only observe the winning bid (Brendstrup and Paarsch (2005)). The
assumption that players observe the full action profile can be relaxed in several ways. First, each
player’s information set contains only up to some recent history. For example, a player in group t
can observe actions played in group t− 1 and t− 2 but not others from group 1 to t− 3. This finite
memory assumption is not unusual in the game theory literature (Bhaskar, Mailath, and Morris
(2013), Sperisen (2018)), but is uncommon in the empirical research. Second, one may assume that
players simultaneously submit their action profile with commitment, but possibly modify their
strategy with some cost. I leave the extensions to future research.

2.2 Equilibrium of the Game

This section introduces the Perfect Bayesian Nash Equilibrium (PBNE) as the equilibrium concept
of the game. The equilibrium concept is required to infer the payoff function parameters from the
player’s action since a researcher can observe only covariates X and the realized action profile s.
Define the strategy function Si by a mapping si = Si

(
Jo(i), εi

)
for i ∈ I. Then the probability of

player i to choose an action a conditional on her information set Jo(i) is

P
(
si = a|Jo(i)

)
=
∫

1
{
Si
(
Jo(i), εi

)
= a

}
dF

(
εi|Jo(i)

)
, (1)

and the expected profit function of player i for an action si = a is derived as follows:

Πi

(
a,Jo(i), εi

)
=
∑
a
o(i)
+

πi
(
a, a

o(i)
+ ,Jo(i);β0

)
P
(
s
o(i)
+ = a

o(i)
+
∣∣Jo(i))+ εi (a)

≡ π̄i
(
a,Jo(i);β0

)
+ εi (a) ,

where ao(i)+ denotes any realized action of so(i)+ . The expected payoff consists of two parts: π̄i is the
expected mean payoff, and εi is a private shock which does not depend on other players’ actions.
The functional form of πi is known to the econometrician up to the finite dimensional parameter
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β0. Player i chooses the optimal action si by solving

si = arg max
a∈A

Πi

(
a,Jo(i), εi

)
.

The sequential behavioral assumption leads to a market outcome, which corresponds to a
Bayesian Nash Equilibrium in the simultaneous game literature. I use the Perfect Bayesian Nash
Equilibrium concept to describe the market outcome.

Definition 2.1. (Perfect Bayesian Nash Equilibrium) A Perfect Bayesian Nash Equilibrium (PBNE)
is a set of strategies

{
Si
(
Jo(i), εi

)}N
i=1

such that for every player i ∈ I,

Si
(
Jo(i), εi

)
= arg max

a∈A
Πi

(
a,Jo(i), εi

)
, (2)

where Jo(i) =
(
s
o(i)
− , X,O

)
and so(i)− is the history of equilibrium actions.

The conditions for PBNE are satisfied by Definition 2.1. First, the sequential rationality con-
dition is satisfied by the equation (2). Second, the consistent belief condition holds because the
distribution of private shocks conditional on history is common knowledge to all players. The defin-
ition requires the whole set of equilibrium strategies S to be a subset of Bayesian Nash Equilibrium
(BNE).3

The equation (2) implies choice probabilities and payoff functions. For i ∈ I and a ∈ A,

Si
(
Jo(i), εi

)
= a

⇐⇒ Πi

(
a,Jo(i), εi

)
≥ Πi

(
a′,Jo(i), εi

)
for all a′ ∈ A\{a},

so that

P
(
si = a|Jo(i)

)
= P

(
Πi

(
a,Jo(i), εi

)
≥ Πi

(
a′,Jo(i), εi

)
, ∀a′ 6= a

)
= P

(
εi
(
a′
)
− εi (a) ≤ π̄i

(
a,Jo(i);β0

)
− π̄i

(
a′,Jo(i);β0

)
, ∀a′ 6= a

)
= Fa

(
π̄i
(
a,Jo(i);β0

)
− π̄i

(
a′,Jo(i);β0

)
, ∀a′ 6= a

)
, (3)

where Fa is the CDF of {εi (a′)− εi (a) , ∀a′ 6= a} conditional on Jo(i).

Remark 2.3. A simple static model with no history clarifies the difference of the current paper from
the previous literature. Under st− = ∅ (no history) and T = 1 (simultaneous actions), the CCP is
defined by

P (si = a|X) = Fa
(
π̄i (a,X;β0)− π̄i

(
a′, X;β0

)
, ∀a′ 6= a

)
,

so that a simultaneous game is a special case that so(i)− = ∅ is fixed and known value for all players.
3The concept of PBNE is a generally used equilibrium concept for incomplete information simultaneous games.

The PBNE is weaker than MPE that is a commonly used equilibrium concept in dynamic games. The definition of
MPE follows Maskin and Tirole (2001), and Bhaskar, Mailath, and Morris (2013).
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The following assumptions establish the one-to-one mapping between P
(
si = a|Jo(i)

)
and

π̄i
(
a,Jo(i);β0

)
.

Assumption 2.1. (Distributional Property of εi) For all i ∈ I and t ∈ To, the distribution of εi
satisfies the followings:

1. εi (si) are i.i.d. across players and actions conditional on (X,O).

2. The CDF of εi is absolutely continuous with respect to the Lebesgue measure and common
knowledge to both players and econometricians.

Assumption 2.2. (Normalization) For all i ∈ I, πi
(
0, so(i)+ ,Jo(i);β0

)
= 0 for all values of so(i)+

and Jo(i).

Assumption 2.1−1 states that a private shock is independently realized for every player condi-
tional on observable covariates and the given order of actions.4 Assumption 2.1−2 implies that the
distribution function of private shocks is known and continuous almost everywhere. Assumption
2.2 is to normalize the payoff for the default action si = 0. The normalization enables to recover
the expected payoff functions with si 6= 0. The specification is natural in entry models where
no-entry gives no profit. The setup is commonly used in binary choice models with A = {0, 1}.
The Assumptions 2.1−2.2 derive two subsequent lemmas as below.

Lemma 2.1. Under Assumption 2.1, a PBNE is defined by a vector of equilibrium probabilities

P (X,O) ≡
{
P
(
si = a|Jo(i)

) ∣∣∣∣a ∈ A, ao(i)− ∈ An
o(i)
− , i ∈ I

}

that satisfy the equation (3) for all a ∈ A, ao(i)− ∈ An
o(i)
− , i ∈ I, and the number of PBNE is finite.

Proof. Appendix A.1.

Hereafter define the equilibrium set E (X,O) by the set of PBNEs P (X,O). Denote B (X,O)
by the number of PBNE conditional on X and O, while the number depends on the true payoff
parameter β. Define

{
τX,O,1, . . . , τX,O,B(X,O)

}
by equilibrium types in E (X,O). The next lemma

is based on Hotz and Miller (1993), verifying the one-to-one mapping between each of equilibrium
probabilities P (X,O) and the corresponding set of expected payoffs

Π̄ (X,O) ≡
{
π̄i
(
a,Jo(i);β0

) ∣∣∣∣a ∈ A, ao(i)− ∈ An
o(i)
− , i ∈ I

}
.

Lemma 2.2. Suppose Assumptions 2.1−2.2 hold. Denote that P(k) (X,O) and Π̄(k) (X,O) are equi-
librium probabilities and the expected payoffs when the equilibrium type is τX,O,k. Then P(k) (X,O)
and Π̄(k) (X,O) have one-to-one correspondence for k = 1, . . . , B (X,O).

4A similar type of this assumption is also observed in Seim (2006), Sweeting (2009), Aradillas-Lopez (2010), Bajari,
Hong, Krainer, and Nekipelov (2010), De Paula and Tang (2012), Lewbel and Tang (2015), Aguirregabiria and Mira
(2019), and other incomplete information game literature.
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Proof. Appendix A.2.

The lemma implies that the mappings Fa in equation (3) are invertible. Then for a given value
of the information set, the equilibrium probability P

(
si = a|Jo(i)

)
can be represented by a function

of the payoff function parameters β0. In the following sections, I assume that P (X,O) is identified
up to a finite dimensional parameter β0 from Π̄ (X,O) and discuss conditions to identify structural
parameters of the model: the payoff function parameters β, the equilibrium selection mechanism,
and the distribution of the order of actions.

Example 2.1. (Type-I Extreme Distribution) Consider an example of Lemma 2.2 in the context
of the multinomial Logit model. Suppose that εi (si) follows an i.i.d. standard Type-I extreme
distribution. Then

P
(
si = a|Jo(i)

)
=

exp
(
π̄i
(
a,Jo(i);β0

))
∑
a′∈A exp

(
π̄i
(
a′,Jo(i);β0

)) ,
for all a ∈ A\{0}, ao(i)− ∈ An

o(i)
− , and i ∈ I. The system of nonlinear equations consist of

L× (L+ 1)n
o(i)
− conditional probabilities for each i and L× (L+ 1)n

o(i)
− expected payoff functions.

The system has a unique solution of Π̄ (X,O) by Lemma 2.2 for a given equilibrium probabilities
P (X,O).

3 Identification

This section takes steps to identify structural parameters in the sequential game. The main goal
is to figure out how to identify the structural parameters

{
β0, λτ |X,O, ρO|X

}
where λτ |X,O is the

probability of an equilibrium type τ conditional on X and O (i.e. equilibrium selection mechanism)
and ρO|X is the distribution of the unobserved order of actions O conditional on X.

I start with a simplified setup without multiple equilibria, focusing on the unknown order of
actions. Then I generalize the model to encompass an arbitrary equilibrium selection mechanism.
The challenging part is to consider both multiple equilibria and unknown order of actions. The
multiple equilibria issue is well-known in simultaneous games literature while identifying the cor-
rect order of actions is an additional challenge in sequential games. I provide a necessary and
sufficient condition of identification by exploiting the property that the type of equilibria and the
possible order of actions are finite. Then I suggest an exclusion restriction that is helpful to achieve
identification in the general case.

In the previous section, Lemma 2.2 verifies a connection of expected payoffs π̄i
(
a,Jo(i);β0

)
and P

(
si = a|Jo(i)

)
for all a ∈ A\{0}, ao(i)− ∈ An

o(i)
− , and i ∈ I. Denote P (k)

(
si = a|Jo(i);β0

)
for k ∈

{
τX,O,1, . . . , τX,O,B(X,O;β0)

}
by the type-k equilibrium probability of player i to choose an

action a ∈ A. B (X,O;β0) highlights the number of PBNE depending on the parameter value β0.
Consider an action profile α = (α1, . . . , αN )′ ∈ AN , all possible orders O ≡ {O1, . . . , ONO}, and
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all types of equilibria
{
τX,O,1, . . . , τX,O,B(X,O;β0)

}
, then for a joint action α,

P (s = α|X) =
NO∑
l=1

B(X,O;β0)∑
b=1

N∏
i=1

P (τX,Ol,b)
(
si = αi|Jol(i);β0

)
λτ |X,O (τX,Ol,b|X,Ol) ρO|X (Ol|X) ,

(4)
where each P (τX,Ol,b)

(
si = αi|Jol(i);β0

)
is an element of P (X,Ol) ∈ E (X,Ol). If the equilibrium

probability P (τX,O,b)
(
si = a|Jo(i);β0

)
and the weight function λτ |X,OρO|X are separately identified

from P (s = α|X), the expected payoff function π̄i
(
a,Jo(i);β0

)
is also identified by Lemma 2.2.

Then the payoff function parameter β0 is identified by solving π̄i
(
a,Jo(i);β0

)
with P (X,Ol). The

nonparametric weight components λτ |X,O (τX,O,b|X,O) and ρO|X (O|X) are separately identified
from the product function λτ |X,O (τX,O,b|X,O) ρO|X (O|X).

Definition 3.1. (Identification) Under the known distribution P (s = α|X) for all α ∈ AN , a
sequential game model is identified if and only if there exists a unique value of structural parameters{
β0, λτ |X,O, ρO|X

}
that solves the equation (4).

The next subsection introduces identification steps in a simplified setup. The identification for
a general setup follows in later sections, provided with additional assumptions.

3.1 Identification without Multiple Equilibria

Consider a simplified model without multiple equilibria, while the order of actions is not observable
to researchers. Many empirical works of simultaneous games with incomplete information suffer
from the potential multiple equilibria, but there are several ways to avoid multiple equilibria using
additional assumptions. The first is to restrict the possible order of actions to fully sequential
actions. The source of multiple equilibria in a sequential game comes from players who make
decisions simultaneously. Einav (2010) suggested a pseudo-backward-induction method under the
assumption of fully sequential actions. The second is to assume the degenerate equilibrium selection.
The assumption that the same equilibrium is played every time may not be realistic, but showing
the identification procedure without multiple equilibria is useful to clarify the identification strategy
with multiple equilibria.

Suppose a unique equilibrium, B (X,O) = 1 for all X ∈ X and O ∈ O regardless of β ∈ B.
Then

P (s = α|X) =
No∑
l=1

N∏
i=1

P
(
si = αi|Jol(i);β0

)
ρO|X (Ol|X) , (5)

where P
(
si = αi|Jol(i);β0

)
= P (τX,O,1)

(
si = αi|Jol(i);β0

)
for simplicity. The equilibrium probabil-

ity P
(
si = αi|Jo(i);β0

)
for i = 1, . . . , N belongs to the equilibrium set E (X,O). P

(
si = αi|Jo(i);β0

)
is a function of the payoff function parameter β0 by the equation (3). Starting by the last group
order i ∈ ITo ,

{
P
(
si = αi|Jo(i);β0

)}
i∈ITo

are uniquely identified by solving nTo equations of (3).{
P
(
si = αi|Jo(i);β0

)}
i∈ITo−1

, . . . ,
{
P
(
si = αi|Jo(i);β0

)}
i∈I1

are also sequentially identified up to

11



the parameter vector β0 following the spirit of Einav (2010)’s pseudo-backward-induction method.
The distribution function of order

{
ρO|X (Ol|X)

}No
l=1

in the equation (5) belongs to a discrete
probability function space

PO ≡
{
ρO|X

∣∣∣∣ No∑
l=1

ρO|X (Ol|X) = 1, ρO|X (Ol|X) ≥ 0 for l = 1, . . . , No

}
,

and there are No−1 nonparametric components. Thus a necessary order condition of identification
is (L+ 1)N ≥ No so that the number of conditional moments is as many as the number of possible
orders.

Define a matrix of equilibrium probabilities and a vector of conditional choice probabilities for
all joint actions

P (X;β0) ≡ [P (X,O1;β0) , . . . , P (X,ONo ;β0)] ∈M(L+1)N×No

Q (X) ≡
(
P
(
s = α1|X

)
, . . . , P

(
s = α(L+1)N−1|X

)
, 1
)′
∈ R(L+1)N

where P (X,O;β0) =
(
P
(
s = α1|X,O;β0

)
, . . . , P

(
s = α(L+1)N−1|X,O;β0

)
, 1
)′
∈ R(L+1)N is a

vector of equilibrium probabilities for all joint actions except α = (0, . . . , 0). The structural para-
meters are identified if there is a unique solution

(
β0, ρO|X

)
of the equation (5). The following

Assumption 3.1 provides a sufficient rank condition for identification.

Assumption 3.1. (Rank Condition) P (X;β0) has full column rank No and the rank of the aug-
mented matrix [P (X;β0) , Q (X)] is No for almost all X ∈ X only at the true parameter β0 ∈ B.

Theorem 3.1. Suppose Assumptions 2.1−2.2, and 3.1 hold. Then the structural parameters(
β0, ρO|X

)
are identified on the parameter space β0 ∈ B and ρO|X ∈ PO.

Proof. Appendix B.1.

Remark 3.1. Under the number of weak orderings on the set of players, the necessary order condition
holds if (L+ 1)2 ≥ 3 for two players, (L+ 1)3 ≥ 13 for three players, and (L+ 1)4 ≥ 75 for four
players. The condition allows a binary action set {a0, a1} only for two-player games. The action
set must include at least 3 actions for three and four-player games, 4 actions for five-player games,
5 actions for six and seven-player games, and 6 actions for eight-player games. Note that this
computation still requires the unique equilibrium assumption, which is not realistic for orders with
simultaneous moves.

Remark 3.2. Suppose a fully sequential game in which only one player makes a decision in each
stage. Then multiple equilibria do not exist, and the order condition stated above is (L+ 1)N ≥ N !.
The reduced number of possible orders allows a binary action set for two-player and three-player
games, since 22 ≥ 2! and 23 ≥ 3!. The action set should have at least three different actions for
four-player to six-player games.
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Example 3.1. (Two-player Entry Game) Suppose there are two players and the potential order of
actions are given by O = (1, 2)′ or O = (2, 1)′. The simultaneous move O = (1, 1)′ does not exist
in this example; thereby, there are not multiple equilibria. The payoff structure of each player is

ui (s,X,O, εi) =

X
′
iβi − s−iδi − εi if si = 1

0 if si = 0.

Then if the order of actions is O = (1, 2)′,

P
(
s2 = 1|Jo(2);β0

)
=

Fε2 (X ′2β2 − δ2) if s1 = 1

Fε2 (X ′2β2) if s1 = 0

P
(
s1 = 1|Jo(1);β0

)
= Fε1

(
X ′1β1 − Fε2

(
X ′2β2 − δ2

)
δ1
)
,

and similarly if O = (2, 1)′,

P
(
s1 = 1|Jo(1);β0

)
=

Fε1 (X ′1β1 − δ1) if s2 = 1

Fε1 (X ′1β1) if s2 = 0

P
(
s2 = 1|Jo(2);β0

)
= Fε2

(
X ′2β2 − Fε1

(
X ′1β1 − δ1

)
δ2
)
.

The resulting probability distribution of s = (s1, s2)′ conditional on the possible orders can be
summarized as below.

P
(
s = (1, 1)′ |X,O = (1, 2)′

)
= Fε1

(
X ′1β1 − Fε2

(
X ′2β2 − δ2

)
δ1
)
Fε2

(
X ′2β2 − δ2

)
P
(
s = (1, 0)′ |X,O = (1, 2)′

)
= Fε1

(
X ′1β1 − Fε2

(
X ′2β2 − δ2

)
δ1
) (

1− Fε2
(
X ′2β2 − δ2

))
P
(
s = (0, 1)′ |X,O = (1, 2)′

)
=
(
1− Fε1

(
X ′1β1 − Fε2

(
X ′2β2 − δ2

)
δ1
))
Fε2

(
X ′2β2

)
P
(
s = (0, 0)′ |X,O = (1, 2)′

)
=
(
1− Fε1

(
X ′1β1 − Fε2

(
X ′2β2 − δ2

)
δ1
)) (

1− Fε2
(
X ′2β2

))
,

and

P
(
s = (1, 1)′ |X,O = (2, 1)′

)
= Fε2

(
X ′2β2 − Fε1

(
X ′1β1 − δ1

)
δ2
)
Fε1

(
X ′1β1 − δ1

)
P
(
s = (1, 0)′ |X,O = (2, 1)′

)
=
(
1− Fε2

(
X ′2β2 − Fε1

(
X ′1β1 − δ1

)
δ2
))
Fε1

(
X ′1β1

)
P
(
s = (0, 1)′ |X,O = (2, 1)′

)
= Fε2

(
X ′2β2 − Fε1

(
X ′1β1 − δ1

)
δ2
) (

1− Fε1
(
X ′1β1 − δ1

))
P
(
s = (0, 0)′ |X,O = (2, 1)′

)
=
(
1− Fε2

(
X ′2β2 − Fε1

(
X ′1β1 − δ1

)
δ2
)) (

1− Fε1
(
X ′1β1

))
.

The equilibrium selection mechanism is not specified since there are not multiple equilibria. For
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example,

P
(
s = (1, 1)′ |X

)
=P

(
O = (1, 2)′ |X

)
Fε1

(
X ′1β1 − Fε2

(
X ′2β2 − δ2

)
δ1
)
Fε2

(
X ′2β2 − δ2

)
+ P

(
O = (2, 1)′ |X

)
Fε2

(
X ′2β2 − Fε1

(
X ′1β1 − δ1

)
δ2
)
Fε1

(
X ′1β1 − δ1

)
, (6)

and the payoff function parameters β0 = (β1, β2, δ1, δ2) and the probability distribution function of
orders P

(
O = (1, 2)′ |X

)
, P

(
O = (2, 1)′ |X

)
= 1−P

(
O = (1, 2)′ |X

)
are parameter of interests in

the model. The model specification satisfies the necessary order condition of identification because
there are three conditional moments P

(
s = (1, 1)′ |X

)
, P

(
s = (1, 0)′ |X

)
, P

(
s = (0, 1)′ |X

)
and

one nonparametric component P
(
O = (1, 2)′ |X

)
. The parameters ρ (X) = P

(
O = (1, 2)′ |X

)
and

β are identified unless there is another pair of
(
ρ̄ (X) , β̄

)
that satisfies the equation (6) and the

equations for P
(
s = (1, 0)′ |X

)
and P

(
s = (0, 1)′ |X

)
for X with probability one.

The primary source of identification is the dimension of the action set. The number of players
affects not only the number of conditional moments but also the number of possible orders. If the
variation of the action set is not enough, I suggest an exclusion restriction that may help identify
the nonparametric order functions without relying on the variation in actions.

Assumption 3.2. (Exclusion Restriction) There exists a strict subset Xs of X such that ρO|X (·|X) =
ρO|X (·|Xs).

The Assumption 3.2 implies the existence of instrumental variables Xv = X\Xs. The variation
of Xv does not affect the order distribution function ρO|X but the conditional choice probability
P (s = α|X) varies with Xv. Then a sufficient variation of Xv contributes to satisfy the order
condition of identification. Suppose Xv has a discrete support

{
x1
v, . . . , x

Nv
v

}
and define a matrix

P (Xs;β0) ≡
[
P
((
Xs, x

1
v

)
;β0
)′
, . . . ,P

((
Xs, x

Nv
v

)
;β0
)′]′

. The parameter β0 and ρO|X are separ-
ately identified from Theorem 3.1.

Corollary 3.1. Suppose Assumptions 2.1−2.2, and 3.2 hold. If P (Xs;β0) has full column rank
No and rank ([P (Xs;β0) , Q (X)]) = No for almost all Xs only at the true parameter β0 ∈ B, then
the structural parameters

(
β0, ρO|X

)
are identified on the parameter space β0 ∈ B and ρO|X ∈ PO.

Proof. Appendix B.2.

Remark 3.3. Another simple but not a practical setup is to assume that ρO|X is fully known to
the researcher. Then the structural parameters are reduced to

{
β0, λτ |X,O

}
so that only equi-

librium types are considered. Under the additional assumption of identification at infinity, the
only parameter of interest is β0. However, there are two concerns in practice. First, the order of
actions is usually not provided in many sources of data. Second, the estimated payoff function
parameter can be biased if the order of actions is misspecified. I report the inconsistency problem
of misspecification and provide a numerical evidence in Section 5.1.
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3.2 Identification with Multiple Equilibria

In this section, I derive identification of structural parameters in a general setting with multiple
equilibria. Multiple equilibria may appear if the order of actions contains any simultaneous moves.
For example, O = (1, 1)′ in a two-player game and O = (1, 1, 2)′ or O = (2, 1, 1)′ in a three-player
game have potential multiple equilibria. Denote P (κ = k|X) = λτ |X,O (τ |X,O) ρO|X (O|X) where
the index κ contains both the equilibrium type τ and the order of actions O. For example, κ = 1 if
τ = τ1 and O = O1 and κ = 2 if τ = τ2 and O = O1. Since the number of PBNEs and the possible
order of actions are finite, the values of κ can be arranged by finite integers. λτ |X,O and ρO|X are
separately identified after the distribution of product unobservables P (κ = k|X) is identified.

With a slight abuse of notation, I denote P (k)
(
si = αi|Jok(i);β0

)
by the equilibrium probability

of player i to choose an action αi when κ = k. Rewrite the conditional choice probabilities by

P (s = α|X) =
Nκ∑
k=1

N∏
i=1

P (k)
(
si = αi|Jok(i);β0

)
P (κ = k|X) , (7)

as a generalization of the equation (5). Nκ =
∑No
l=1B (X,Ol;β0) is the total number of possible κs

as a combination of an equilibrium type and an order of actions.
Define a matrix of equilibrium probabilities

P ′ (X;β0) ≡
[
P (1) (X,O1;β0) , . . . , P (Nκ) (X,ONκ ;β0)

]
∈M(L+1)N×Nκ ,

where P (k) (X,O;β0) =
(
P (k) (s = α1|X,O;β0

)
, . . . , P (k)

(
s = α(L+1)N−1|X,O;β0

)
, 1
)′
∈ R(L+1)N .

Then a similar rank condition as Assumption 3.1 works for identification.

Theorem 3.2. Suppose Assumptions 2.1−2.2 hold. If P ′ (X;β0) has full column rank Nκ and
rank ([P ′ (X;β0) , Q (X)]) = Nκ for almost all X ∈ X only at the true parameter β0 ∈ B, then the
structural parameters of the sequential game

{
β0, λτ |X,O, ρO|X

}
are identified.

Proof. Appendix B.3.

The necessary order condition of identification is (L+ 1)N ≥ Nκ. The condition implies that the
number of conditional choice probabilities is at least as many as the number of unobserved types.
The order condition may not hold if there are too many possible orders or equilibrium types.
The additional exclusion restriction (Assumption 3.2) or the assumption of degenerate equilibrium
selection rule can be used to relax the order condition.

First, P (κ = k|X) = λτ |X,O (τ |X,O) ρO|X (O|Xs) under Assumption 3.2. Then for N ! fully se-
quential orders, P (κ = k|X) = ρO|X (O|Xs) and the variation ofXv does not influence P (κ = k|X).
The other No−N ! orders may have multiple equilibria. In this case, the order condition is relaxed
by (L+ 1)N ≥ Nκ−N !. Second, the degenerate equilibrium selection assumes λτ |X,O (τ |X,O) = 1
for a specific τ ∈

{
τX,O,1, . . . , τX,O,B(X,O;β0)

}
. Then the model is identified if there is a unique

P (X;β0) to satisfy the rank condition for almost all X ∈ X out of
∏No
l=1B (X,O;β0) possible
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equilibrium probability combinations. The order condition is (L+ 1)N ≥ No, the same as the one
without multiple equilibria.

Example 3.2. (Two-player Entry Game, continued) Suppose two players and the potential order
of actions are given by O = (1, 2)′, O = (2, 1)′, and O = (1, 1)′. The structure of the game follows
a sequential game if O = (1, 2)′ or O = (2, 1)′, while in some markets two player simultaneously
move. The payoff structure of each player is

ui (s,X,O, εi) =

X
′
iβi − s−iδi − εi if si = 1

0 if si = 0.

Then if O = (1, 1)′,

P
(
s1 = 1|Jo(1);β0

)
= Fε1

(
X ′1β1 − P

(
s2 = 1|Jo(2);β0

)
δ1
)

P
(
s2 = 1|Jo(2);β0

)
= Fε2

(
X ′2β2 − P

(
s1 = 1|Jo(1);β0

)
δ2
)
, (8)

where Jo(1) is equivalent to Jo(2). By definition of the PBNE, the conditional choice probabilities
P
(
s1 = 1|Jo(1)

)
and P

(
s2 = 1|Jo(2)

)
solve the equation (8) under the assumption that ε1 and ε2

are independent conditional on Jo(i). The resulting probability distribution of s = (s1, s2)′ can be
summarized as below.

P
(
s = (1, 1)′ |X,O = (1, 1)′

)
= P

(
s1 = 1|Jo(1);β0

)
P
(
s2 = 1|Jo(2);β0

)
P
(
s = (1, 0)′ |X,O = (1, 1)′

)
= P

(
s1 = 1|Jo(1);β0

) (
1− P

(
s2 = 1|Jo(2);β0

))
P
(
s = (0, 1)′ |X,O = (1, 1)′

)
=
(
1− P

(
s1 = 1|Jo(1);β0

))
P
(
s2 = 1|Jo(2);β0

)
P
(
s = (0, 0)′ |X,O = (1, 1)′

)
=
(
1− P

(
s1 = 1|Jo(1);β0

)) (
1− P

(
s2 = 1|Jo(2);β0

))
.

The solution of the equation (8) may not be unique. Suppose there are three PBNEs at the true
parameter values β0 and denote equilibrium probabilities by{(

P (τ)
(
s1 = 1|Jo(1);β0

)
, P (τ)

(
s2 = 1|Jo(2);β0

))}3

τ=1
.

Then for a joint action s = (1, 1)′,

P
(
s = (1, 1)′ |X

)
=P

(
O = (1, 2)′ |X

)
Fε1

(
X ′1β1 − Fε2

(
X ′2β2 − δ2

)
δ1
)
Fε2

(
X ′2β2 − δ2

)
+ P

(
O = (2, 1)′ |X

)
Fε2

(
X ′2β2 − Fε1

(
X ′1β1 − δ1

)
δ2
)
Fε1

(
X ′1β1 − δ1

)
+ P

(
O = (1, 1)′ |X

)
P
(
s1 = 1, s2 = 1|X,O = (1, 1)′

)
,
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where

P
(
s = (1, 1)′ |X,O = (1, 1)′

)
=

3∑
τ=1

λ
(
τ |X,O = (1, 1)′

)
P (τ)

(
s1 = 1|Jo(1);β0

)
P (τ)

(
s2 = 1|Jo(2);β0

)
3∑

τ=1
λ
(
τ |X,O = (1, 1)′

)
= 1

λ
(
1|X,O = (1, 2)′

)
= λ

(
1|X,O = (2, 1)′

)
= 1,

and the parameter of interests in the model are (1) the payoff function parameters β0 = (β1, β2, δ1, δ2),
(2) the order of actions P

(
O = (1, 2)′ |X

)
, P

(
O = (2, 1)′ |X

)
, P

(
O = (1, 1)′ |X

)
, and (3) the equi-

librium selection mechanism λ
(
τ |X,O = (1, 1)′

)
for τ = 1, 2, 3. Note that λ = 1 for sequential

actions O = (1, 2)′ and (2, 1)′ thanks to the unique PBNE.
Define a new index κ to describe the product of P (O|X) and λ (τ |X,O). I show that the identi-

fication of the product function P (O|X)λ (τ |X,O) is sufficient to identify P (O|X) and λ (τ |X,O)
separately. In this example,

P (κ = 1|X) = P
(
O = (1, 2)′ |X

)
λ
(
1|X,O = (1, 2)′

)
P (κ = 2|X) = P

(
O = (2, 1)′ |X

)
λ
(
1|X,O = (2, 1)′

)
P (κ = 3|X) = P

(
O = (1, 1)′ |X

)
λ
(
1|X,O = (1, 1)′

)
P (κ = 4|X) = P

(
O = (1, 1)′ |X

)
λ
(
2|X,O = (1, 1)′

)
P (κ = 5|X) = P

(
O = (1, 1)′ |X

)
λ
(
3|X,O = (1, 1)′

)
,

and
∑5
l=1 P (κ = l|X) = 1. If each of P (κ = l|X) is identified,

P
(
O = (1, 2)′ |X

)
= P (κ = 1|X)

P
(
O = (2, 1)′ |X

)
= P (κ = 2|X)

P
(
O = (1, 1)′ |X

)
= P (κ = 3|X) + P (κ = 4|X) + P (κ = 5|X)

λ
(
1|X,O = (1, 1)′

)
= P (κ = 3|X)
P (κ = 3|X) + P (κ = 4|X) + P (κ = 5|X)

λ
(
2|X,O = (1, 1)′

)
= P (κ = 4|X)
P (κ = 3|X) + P (κ = 4|X) + P (κ = 5|X)

λ
(
3|X,O = (1, 1)′

)
= P (κ = 5|X)
P (κ = 3|X) + P (κ = 4|X) + P (κ = 5|X) .

The identification of P (κ = l|X) follows the similar steps as the previous example. The condi-
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tional choice probability P
(
s = (1, 1)′ |X

)
is

P
(
s = (1, 1)′ |X

)
=P (κ = 1|X)Fε1

(
X ′1β1 − Fε2

(
X ′2β2 − δ2

)
δ1
)
Fε2

(
X ′2β2 − δ2

)
+ P (κ = 2|X)Fε2

(
X ′2β2 − Fε1

(
X ′1β1 − δ1

)
δ2
)
Fε1

(
X ′1β1 − δ1

)
+ P (κ = 3|X)P (1)

(
s1 = 1|Jo(1);β0

)
P (1)

(
s2 = 1|Jo(2);β0

)
+ P (κ = 4|X)P (2)

(
s1 = 1|Jo(1);β0

)
P (2)

(
s2 = 1|Jo(2);β0

)
+ P (κ = 5|X)P (3)

(
s1 = 1|Jo(1);β0

)
P (3)

(
s2 = 1|Jo(2);β0

)
.

In a binary game with two players, the conditional distribution function of κ on X is not
nonparametrically identified since there are three conditional moments for three joint actions
P
(
s = (1, 1)′ |X

)
, P

(
s = (1, 0)′ |X

)
, and P

(
s = (0, 1)′ |X

)
but four unknown functions P (κ = l|X)

for l = 1, . . . , 4. The necessary order condition does not hold under multiple equilibria.
In this example, the exclusion restriction of Assumption 3.2 still works for point identification

of structural parameters. There is a single equilibrium under O = (1, 2)′ and O = (2, 1)′ so that
P (κ = 1|X) = P (κ = 1|Xs) and P (κ = 2|X) = P (κ = 2|Xs). P (κ = 3|X), P (κ = 4|X), and
P (κ = 5|X) are still functions of Xv because the number of PBNEs depends on the payoff-relevant
covariates X. Since P (κ = 5|X) = 1−

∑4
l=1 P (κ = l|X), there are two nonparametric components

P (κ = 3|X) and P (κ = 4|X) conditional on Xs. The additional variation of Xv is a source of
identification because a value of Xv provides P (s = α|X) for four joint actions but P (κ = l|X) for
at most three equilibria. The necessary order condition is satisfied since the number of conditional
moments exceeds the number of unknown parameters.

The degenerate equilibrium selection rule applies that λ
(
τ |X,O = (1, 1)′

)
= 1 for one of τ ∈

{1, 2, 3} and λ
(
τ |X,O = (1, 1)′

)
= 0 for others. Define

P(τ) (X;β0) ≡
[
P
(
X,O = (1, 2)′ ;β0

)
, P
(
X,O = (2, 1)′ ;β0

)
, P (τ)

(
X,O = (1, 1)′ ;β0

)]
,

for τ ∈ {1, 2, 3}. The structural parameters are identified if P(τ) (X;β0) is full rank for almost all
X ∈ X only at β0 ∈ B and the selected τ . The order condition is the same as the one without
multiple equilibria because only one equilibrium type is assigned to each order of actions.

4 Estimation and Inference

In this section, I suggest an estimator for the structural parameters based on Theorem 3.2 and
figure out asymptotic properties of the estimator. I start by the conditional moment restrictions
of the model and apply the SMD estimator of Ai and Chen (2003). The asymptotic properties of
the SMD estimator are verified based on Ai and Chen (2003), Newey and Powell (2003), and Chen
and Pouzo (2015). The smoothness assumptions for the equilibrium selection rule and the order
of actions provide sufficient conditions for consistency and asymptotic normality of the proposed
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estimator.

4.1 Estimation of Structural Parameters

Suppose that a researcher observes n independent games. The actions sm = (s1,m, . . . , sN,m)′ and
observable characteristics Xm for each game m = 1, . . . , n are available. The representation in
equation (7) describes the relation of conditional choice probabilities and structural parameters.
For each joint action α, there is a conditional moment regarding structural parameters β ∈ B and
hk (X) ∈ Hk such that

∑Nκ
k=1 hk (X) = 1:

E

[
1 {sm = α} −

Nκ∑
k=1

N∏
i=1

P (k)
(
si,m = αi|Jmok(i);β0

)
hk (Xm)

∣∣∣∣Xm

]
= 0. (9)

Hereafter I denote h0,k (X) ≡ P (κ = k|X).
There are in total (L+ 1)N conditional moments, including E

[
1−

∑Nκ
k=1 hk (Xm) |Xm

]
= 0.

Denote the conditional moments by E [` (Zm, θ) |Xm] = 0, where Zm =
(
sm
′
, Xm′

)′
and θ =

(β, h1, . . . , hNκ) ∈ B ×H1 × · · · × HNκ . ` (Zm, θ) =
(
`1 (Zm, θ) , . . . , `(L+1)N (Zm, θ)

)′
with

`j (Zm, θ) = 1
{
sm = αj

}
−

Nκ∑
k=1

N∏
i=1

P (k)
(
si,m = αji |J

m
ok(i);β

)
hk (Xm) ,

for j = 1, . . . , (L+ 1)N − 1 and `(L+1)N (Zm, θ) = 1−
∑Nκ
k=1 hk (Xm).

Assume that the number of unknown typesNκ is known to the researcher. Note thatNκ depends
on the payoff relevant parameter β in general, while the upper bound of Nκ is still available. The
additional assumptions also provide information on Nκ. Nκ = No under the unique equilibrium or
degenerate equilibrium selection assumption, and Nκ = N ! under the completely sequential order
of actions.

I use a linear sieve estimator suggested by Ai and Chen (2003) and follow-up nonparametric sieve
estimation literature to estimate nonparametric functions h1, . . . , hNκ . Define H = H1× · · · ×HNκ
and a corresponding sieve space Hn = H1,n × · · · × HNκ,n. Consider a sequence of known basis
functions {pj (X) |j = 1, 2, . . .}, for example, tensor-product B-splines of order of order γ′ > dx/2+
1. Denote pJn (X) = (p1 (X) , . . . , pJn (X))′ and P Jn =

(
pJn

(
X1) , . . . , pJn (Xn)

)′
. Let Θ = B ×H

be the parameter space and θ0 = (β′0, h′0)′ = (β′0, h0,1, . . . , h0,Nκ)′ be the true parameter vector.
Then the SMD estimator θ̂n =

(
β̂′n, ĥ

′
n

)′
=
(
β̂′n, ĥ1,n, . . . , ĥNκ,n

)′
solves

min
θ∈B×Hn

(
n∑

m=1
` (Zm, θ)⊗ pJn (Xm)

)′ (
I ⊗

(
P J
′
nP Jn

)−1
)( n∑

m=1
` (Zm, θ)⊗ pJn (Xm)

)
, (10)

where I is the (L+ 1)N × (L+ 1)N dimensional identity weight matrix.
I provide assumptions for consistency and asymptotic normality of θ̂n below.
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Assumption 4.1. (Data Generating Process)

1. The data sm = (s1,m, . . . , sN,m) and Xm =
(
X ′1,m, . . . , X

′
N,m

)′
for m = 1, . . . , n are i.i.d..

2. X ⊆ Rdx is compact with nonempty interior, and the probability density function of X is
bounded and bounded away from zero.

3. The smallest and the largest eigenvalues of E
[
pJn (X) pJn (X)′

]
are bounded and bounded

away from zero for all Jn.

The first set of assumptions is common in the nonparametric sieve estimation. The next as-
sumption imposes smoothness to the nonparametric components of the structural parameters. I
assume that every nonparametric function P (κ = k|X) is a smooth function on X so that linear
sieves, including power series and splines, can approximate P (κ = k|X). Assumption 4.2 implies
that each CCP and P (κ = k|X) has bγc bounded derivatives, where bγc is the largest integer less
than γ.

Assumption 4.2. (Smoothness Condition) The CCPs P (s = α|X) for α ∈ AN and the product
functions h0,k (X) = P (κ = k|X) for k = 1, . . . , Nκ belong to a Hölder space with smoothness
parameter γ > dx/2.

The next assumption is about continuity of equilibrium probability functions. The assump-
tion holds if Assumption 2.1 holds and the player’s payoff function is a continuous function of
β. Examples 3.1 and 3.2 show that the equilibrium probability is continuous for a linear payoff
function.

Assumption 4.3. (Equilibrium Probability) The equilibrium probability P (k)
(
s = α|Jok(i);β

)
for

k = 1, . . . , Nκ is continuously differentiable at β ∈ B and X ∈ X almost surely. B is a compact and
convex set in Euclidean space.

The last assumption for consistency is the choice of smoothing parameters. Define Kn by the
dimension of the sieve space Hk,n for k = 1, . . . , Nκ. The SMD estimator works properly when the
number of unconditional moments generated by a smoothing parameter Jn is at least as many as
the number of unknowns. The unknown parameters include a dβ-dimensional β and Nκ probability
mass functions approximated by Kn-dimensional sieve basis.

Assumption 4.4. (Smoothing Parameters) (L+ 1)N Jn ≥ dβ + NκKn, Kn → ∞ and Jn/n → 0
as n→∞.

The next set of assumptions are additional conditions to derive asymptotic normality of the
proposed SMD estimator. Ai and Chen (2003) provided conditions for asymptotic normality of
√
n
(
β̂n − β0

)
, focusing on the parametric component of the parameters. The result is applied

to inference on the payoff relevant parameter β. I also verify regularity conditions in Chen and
Pouzo (2015) to show inference on functionals of other structural parameters λτ |X,O and ρO|X . For
example, I derive asymptotic normality of

√
n
(
ĥk,n (x)− h0,k (x)

)
for some k ∈ {1, . . . , Nκ} and

x ∈ X .
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Assumption 4.5. (Conditions for Asymptotic Normality of β̂n)

1. θ0 is an interior point of Θ.

2. The equilibrium probability P (k)
(
s = α|Jok(i);β

)
for k = 1, . . . , Nκ is twice continuously dif-

ferentiable at β ∈ B and X ∈ X almost surely.

3. J−γ/dxn = o
(
n−1/4

)
, K−γ/dxn = o

(
n−1/4

)
, and JnKn logn = o

(
n1/2

)
.

The first part of Assumption 4.5 is a standard non-boundary condition. The second to the last
parts are additional smoothness assumptions to derive asymptotic normality of

√
n
(
β̂n − β0

)
.

4.2 Asymptotic Properties of the Estimator

This subsection derives asymptotic properties of the proposed SMD estimator, based on the as-
sumptions provided in the previous subsection. First, I verify the consistency of the SMD estimators
β̂n and ĥn. Second, I derive asymptotic normality of the SMD estimators of regular and irregu-
lar functionals. Particularly the asymptotic distributions of

√
n
(
β̂n − β0

)
and the sieve t statistic

√
n ‖ν̂∗n‖

−1
sd,h

(
ĥk,n (x)− h0,k (x)

)
for some x ∈ X are discussed. The closed form of the sieve variance

‖ν̂∗n‖
2
sd,h is provided in the context of Ai and Chen (2003) and Chen and Pouzo (2009, 2015).
The first main result is consistency of θ̂n to θ0. Define a metric ‖·‖s by

‖θ‖s = ‖β‖E + max
k=1,...,Nκ

sup
x∈X
|hk (x)| ,

where ‖·‖E is the Euclidean metric. The following theorem presents consistency of θ̂n to θ0 under
‖·‖s.

Theorem 4.1. (Consistency) Suppose that θ0 is identified by Theorems 3.1 and 3.2. Under As-
sumptions 4.1−4.4,

∥∥∥θ̂n − θ0
∥∥∥
s

= op (1).

Proof. Appendix C.1.

The asymptotic distribution of θ̂n is derived with additional assumptions introduced in the
previous subsection. Define

Dn = E
[
∆n (X)′∆n (X)

]
Ψn = E

[
∆n (X)′ ` (Z, θ0) ` (Z, θ0)′∆n (X)

]
,

where ∆n (X) is a (L+ 1)N × (dβ +NκKn) dimensional sieve gradient matrix,

∆n (X) ≡ [∆β0 (X) ,∆h0,n (X)]

∆β0 (X) ≡
Nκ∑
k=1

∂

∂β′
P (k) (X,O;β0)h0,k (X)

∆h0,n (X) ≡
[
P (1) (X,O;β0)⊗ pK′n (X) , . . . , P (Nκ) (X,O;β0)⊗ pK′n (X)

]
.
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Assumption 4.6. (Asymptotic Variance) The components of the asymptotic variance of
√
n
(
β̂n − β0

)
are well-defined.

1. Dn is a positive definite matrix.

2. Σ0 (X) = E
[
` (Z, θ0) ` (Z, θ0)′ |X

]
is positive definite and the smallest and the largest eigen-

values of Σ0 (X) are bounded and bounded away from zero uniformly in X ∈ X .

Based on the provided assumptions above, I propose the following asymptotic normality results.
The details of the proof verify sufficient conditions of asymptotic normality in Ai and Chen (2003)
and Chen and Pouzo (2015). The sieve asymptotic variances of the estimators β̂n and ĥk,n have
closed form expressions by applying the functional Delta method to the variance-covariance matrix
D−1
n ΨnD

−1
n . Denote that Ik is a k×k dimensional identity matrix and Oj×k is a j×k dimensional

zero matrix.

Theorem 4.2. (Asymptotic Normality of β̂n) Suppose that assumptions for Theorem 4.1 are sat-
isfied. Under the additional Assumptions 4.5−4.6,

√
n ‖ν∗n‖

−1
sd,β

(
β̂n − β0

)
d−→ N

(
0, Idβ

)
,

where

‖ν∗n‖
2
sd,β = G′βD

−1
n ΨnD

−1
n Gβ

Gβ ≡
[
Idβ ,Odβ×(Nκ−1)Kn

]′
.

Proof. Appendix C.2.

Note that the asymptotic variance the SMD estimator β̂n is the limiting value of ‖ν∗n‖
2
sd,β as

n→∞. I provide a closed form of the asymptotic variance in Appendix. The next theorem states
the limiting distribution of the functional of SMD estimator ĥn. Suppose that h0,k (x) for some
x ∈ X is the parameter of interest. Chen and Pouzo (2015) showed a closed form expression for
the sieve variance ‖ν∗n‖

2
sd,h, which is applied to inference on structural parameters h0,k (x).

Theorem 4.3. (Asymptotic Normality of ĥk,n) Suppose that assumptions for Theorem 4.1 are
satisfied. Under the additional Assumptions 4.5−4.6,

√
n

(
ĥk,n (x)− h0,k (x)

)
‖ν∗n‖sd,h

d−→ N (0, 1) ,

for some x ∈ X and k ∈ {1, . . . , Nκ}, where

‖ν∗n‖
2
sd,h = G′hkD

−1
n ΨnD

−1
n Ghk

Ghk =
[
O1×(dβ+(k−1)Kn), p

K′n (x) ,O1×(Nκ−k)Kn

]′
.
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Proof. Appendix C.3.

Theorems 4.2 and 4.3 respectively show asymptotic normality of the parametric and nonpara-
metric components of the structural parameter. The application of asymptotic normality to em-
pirical illustrations requires a consistent estimator for ‖ν∗n‖

2
sd,β and ‖ν∗n‖

2
sd,h. Both sieve variances

‖ν∗n‖
2
sd,β and ‖ν∗n‖

2
sd,h share the same components Dn and Ψn and nonstochastic Gβ and Ghk so that

I can propose a plug-in sieve variance estimator using consistent estimators of Dn and Ψn. Provided
that ` (Zm, θ) is pointwise smooth by Assumptions 4.2 and 4.3, I derive asymptotic normality of
the structural parameter with a consistent variance estimator.

Define the plug-in estimators D̂n and Ψ̂n:

D̂n = 1
n

n∑
m=1

∆̂n (Xm)′ ∆̂n (Xm)

Ψ̂n = 1
n

n∑
m=1

∆̂n (Xm)′ ˆ̀
(
Zm, θ̂n

)
ˆ̀
(
Zm, θ̂n

)′
∆̂n (Xm) ,

where

∆̂n (Xm) ≡
[
∆̂β0 (Xm) , ∆̂h0,n (Xm)

]
∆̂β0 (Xm) ≡

Nκ∑
k=1

∂

∂β′
P (k)

(
Xm, O; β̂n

)
ĥn (Xm)

∆̂h0,n (Xm) ≡
[
P (1)

(
Xm, O; β̂n

)
⊗ pK′n (Xm) , . . . , P (Nκ)

(
Xm, O; β̂n

)
⊗ pK′n (Xm)

]
.

The equilibrium probabilities P (k)
(
Xm, O; β̂n

)
are evaluated by solving the equation (3) at Xm

and β̂n, and a numerical derivative ∂
∂β′P

(k)
(
Xm, O; β̂n

)
is computed at β̂n.

Theorem 4.4. (Consistent Variance Estimator) Suppose that assumptions for Theorem 4.2 and
4.3 are satisfied. Then

√
n ‖ν̂∗n‖

−1
sd,β

(
β̂n − β0

)
d−→ N

(
0, Idβ

)
√
n

(
ĥk,n (x)− h0,k (x)

)
‖ν̂∗n‖sd,h

d−→ N (0, 1) ,

for some x ∈ X and k ∈ {1, . . . , Nκ}, where

‖ν̂∗n‖
2
sd,β = G′βD̂

−1
n Ψ̂nD̂

−1
n Gβ

‖ν̂∗n‖
2
sd,h = G′hkD̂

−1
n Ψ̂nD̂

−1
n Ghk .

Proof. Appendix C.4.

Note that the results in Theorems 4.2−4.4 can be applied to inference on other functionals of
interest. Chen and Pouzo (2015) not only discussed inferences on linear functionals of the structural
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parameters but also nonlinear ones. The asymptotic distributions for other linear and nonlinear
functionals, including ρO|X (O|X) and λτ |X,O (τ |X,O), are direct applications of the established
theoretical results.

5 Simulation and Empirical Application

5.1 Simulation Results

This section presents Monte Carlo simulations to evaluate the performance of estimation and in-
ference results under the finite sample. I also numerically illustrate the effect of misspecified order
to the estimation results. The simulation not only verifies that the proposed SMD estimator is
valid, but also indicates that the estimation of an empirical game without considering the order of
actions can be misleading.

The simulation experiments consist of games with linear payoff functions.

u1 =

X1β1 + ∆1S2 − ε1 if S1 = 1

0 if S1 = 0

u2 =

X2β2 + ∆2S1 − ε2 if S2 = 1

0 if S2 = 0,

where εi follows a Type 1 Extreme distribution for i = 1, 2. The parameter values are (β1, β2) =
(3, 2) and (∆1,∆2) = (−6,−4). For simplicity, the components of the game have discrete supports:
Xi ∈ {0.5, 1.0, 1.5, 2.0}, and follows a discrete uniform distribution on each support point. The
game has only two players so that there are at most three PBNE under the simultaneous move.
When there are multiple equilibria, the probability assigned for each equilibrium is fixed by 1/3.

In the first experiment, we consider a two-player game with two sequential actions O1 = (1, 2)′

and O2 = (2, 1)′. The probability of the order is given by ρO|X (O1|X) = (X1 +X2) /10. For
example, the player 1 is the first mover and the player 2 is the second mover with probability 0.2
for the market with X1 = 1 and X2 = 1. The possible orders are fully sequential so that there are
not multiple equilibria. The number of simulations is 1000, and the sample size (the number of
markets) varies by n = 500, 1000, 5000.

Table 1 summarizes the estimates and standard error of the SMD estimator. I provide the es-
timates of payoff parameters (β1, β2), (∆1,∆2), and some of the selected probability mass functions
P
(
O = (1, 2)′ |X

)
. There are 16 combinations of (X1, X2) since each Xi has four different values,

and Table 1 only reports four values. The performance of the estimator for unreported outcome is
similar as the reported results. The estimates are getting closer to the true parameter values and
the corresponding standard errors are getting smaller as the number of games n increases.

In the second experiment, the set of possible orders consists of two sequential actions in the first
experiment and the simultaneous move: O1 = (1, 2)′, O2 = (2, 1)′, and O3 = (1, 1)′. Xi ∈ {1, 2, 3, 4}
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n = 500 n = 1000 n = 5000
Estimates Std. Err. Estimates Std. Err. Estimates Std. Err.

β1 3.0224 1.0244 2.9317 0.6819 2.9851 0.2848
β2 3.2107 1.6446 2.5848 0.9277 2.1032 0.2727
∆1 -6.0939 1.9919 -5.8906 1.3065 -5.9763 0.5412
∆2 -6.4342 3.3420 -5.1746 1.8622 -4.2078 0.5303

P
(
O = (1, 2)′ |X = (1, 1)

)
0.2477 0.1061 0.2351 0.0810 0.2066 0.0422

P
(
O = (1, 2)′ |X = (2, 2)

)
0.4482 0.1593 0.4314 0.1241 0.4075 0.0567

P
(
O = (1, 2)′ |X = (1, 2)

)
0.3680 0.1992 0.3350 0.1384 0.3084 0.0507

P
(
O = (1, 2)′ |X = (2, 1)

)
0.3815 0.1980 0.3563 0.1597 0.3122 0.0775

Table 1: Estimation of the Incomplete Information Game Theoretic Model (Sequential Actions)

Note: n is sample size, and the true value of parameter is (β1, β2) = (3, 2), (∆1,∆2) = (−6,−4),
P
(
O = (1, 2)′ |X

)
= (X1 +X2) /10. The number of simulations is 1000. The estimates are computed

by the sample mean and the sample standard error of 1000 estimated values.

with a discrete uniform distribution. The probability of the order follows ρO|X (O1|X) = X1/10,
ρO|X (O2|X) = X2/10, and ρO|X (O3|X) = 1 − (X1 +X2) /10. There are three equilibria when
(X1, X2) = (1, 1), and there is a unique equilibrium for other (X1, X2) values. The equilibrium
selection mechanism assigns the same probability to each of the equilibrium when there are multiple
equilibria: λτ |X,O (τ |X = (1, 1) , O2) = 1/3 for every τ . I assume that the equilibrium selection
probability is known to the econometrician in this example, because the number of joint actions
should be as many as the number of equilibrium outcomes for identification. The number of games
varies with n = 500, 1000, 5000.

The simulation results for the second experiment are presented in Table 2. The suggested SMD
estimator works well under the correct order of actions and the multiple potential equilibria, and
the performance of the estimator improves as the sample size n increases. The following empirical
application in Section 5.2 uses the model specifications in the first and second experiments.

The next simulation experiments provide numerical evidence of estimation bias under the mis-
specified order of actions. I preserve the basic setup used in the second experiment and consider
the situation as a completely simultaneous or sequential game. The order of actions depends on
ρO|X (O1|X) and ρO|X (O2|X) so that ρO|X (O1|X) = ρO|X (O2|X) = 0 implies a simultaneous
game and ρO|X (O1|X) = 1 implies a sequential game. Assume that all games are simultaneous
games, and estimate the model in two different ways. The first one is a correctly specified case:
the data generating process follows a simultaneous game, and the model is estimated assuming a
simultaneous game. The second one is a misspecified case: the DGP still follows a simultaneous
game but apply the estimation method for sequential games. Similar experiments are conducted
by assuming that all games are sequential games. The following table compares the estimates of
payoff function parameters for these two cases.

Table 3 shows that the misspecified case does not capture the true parameter values (β1, β2) =
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n = 500 n = 1000 n = 5000
Estimates Std. Err. Estimates Std. Err. Estimates Std. Err.

β1 4.0194 1.7968 3.4223 1.1530 3.2314 0.5008
β2 2.8799 1.6547 2.3853 1.0219 2.1518 0.3570
∆1 -8.0242 3.8142 -6.8062 2.4815 -6.4407 1.0980
∆2 -5.8660 3.5192 -4.7713 2.2413 -4.3089 0.7824

P
(
O = (1, 2)′ |X = (1, 2)

)
0.1423 0.1742 0.1206 0.1187 0.0995 0.0293

P
(
O = (1, 2)′ |X = (2, 3)

)
0.3139 0.3148 0.2870 0.2987 0.2265 0.1763

P
(
O = (2, 1)′ |X = (2, 1)

)
0.1639 0.2082 0.1310 0.1344 0.1050 0.0413

P
(
O = (2, 1)′ |X = (2, 2)

)
0.2196 0.1604 0.2164 0.1394 0.1998 0.0487

Table 2: Estimation of the Incomplete Information Game Theoretic Model (Sequential Actions and
Simultaneous Action)

Note: n is sample size, and the true value of parameter is (β1, β2) = (3, 2), (∆1,∆2) = (−6,−4),
P
(
O = (1, 2)′ |X

)
= X1/10, P

(
O = (2, 1)′ |X

)
= X2/10. The number of simulations is 1000. The estimates

are computed by the sample mean and the sample standard error of 1000 estimated values.

(3, 2) and (∆1,∆2) = (−6,−4) within a 95% confidence interval in spite of a sufficient sample size.
For example, the strategic interaction parameter of player 1 is ∆1 = −6, but the estimate under
the misspecified order is −3.07. The bias exists in other parameters of interest according to Table
3. The result is similar when all games are simultaneous games. The proposed SMD estimator
provides estimates that are close to the true parameter values under the correct specification, but
the misspecified order of actions leads to a significant asymptotic bias. The main finding from the
Table 3 informs a potential risk of misspecified order of actions. If the game in the market is a
sequential game but an econometrician applies the estimation methods for a simultaneous game,
the estimates can be misleading and may derive not plausible results.

5.2 Empirical Application: Entry Game

This section presents an empirical application of the game-theoretic model, considering the sequen-
tial order of actions. I apply the model to an entry game between Walmart and Kmart using the
dataset of Jia (2008).5 The empirical model of Jia (2008) is a three-stage game that captures the
pre-chain period competition among small retailers, the simultaneous entry decisions of Walmart
and Kmart, and the following market adjustment. The simplified model I develop is an incomplete
information entry game of Walmart and Kmart without considering local retailers. The parameters
of interest are the payoff function of players and the probability distribution of the order of actions.

The sources of the dataset are the Chain Store Guide (1988−1997), U.S. Census Bureau, and
the Missouri State Census Data Center. The dataset contains the entry decision of Walmart and
Kmart across 2065 counties in the United States observed in two periods, 1988 and 1997. There

5The data file is available at the following link: https://barwick.economics.cornell.edu/Data.html.
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n = 500 n = 1000 n = 5000
Simultaneous (Correctly Specified) Estimates Std. Err. Estimates Std. Err. Estimates Std. Err.

β1 3.6114 2.6312 3.4164 2.2967 3.1269 0.9769
β2 2.4729 1.6111 2.3835 1.4545 2.1512 0.6344
∆1 -5.9525 4.4415 -5.4472 3.7776 -5.9944 1.7528
∆2 -4.3551 3.3789 -3.5876 2.5196 -3.9883 1.1988

Simultaneous (Misspecified)
β1 1.9210 0.8322 1.9710 0.4596 2.0053 0.1838
β2 1.1123 0.6155 0.9349 0.4636 0.8546 0.3436
∆1 -2.8356 1.4094 -2.9900 0.8617 -3.0692 0.1795
∆2 -1.5654 1.4947 -1.1462 1.1220 -0.9185 0.4424

Sequential (Correctly Specified)
β1 3.4217 1.2058 3.1900 0.6493 3.0256 0.2261
β2 2.1242 0.4740 2.0437 0.2370 2.0056 0.0931
∆1 -6.8553 2.5389 -6.3981 1.3835 -6.0523 0.4973
∆2 -4.2373 0.9610 -4.0790 0.4943 -4.0112 0.1977

Sequential (Misspecified)
β1 2.1169 1.3935 1.8801 1.3197 1.7695 0.5624
β2 1.2128 0.7455 1.0883 0.5503 0.9933 0.2993
∆1 -1.1987 0.7330 -1.0990 0.7195 -0.9853 0.2997
∆2 -1.9240 1.2763 -1.7248 0.9508 -1.6221 0.5074

Table 3: Estimation under Misspecification versus Correct Specification

Note: n is sample size, and the true value of parameter is (β1, β2) = (3, 2), (∆1,∆2) = (−6,−4).
P
(
O = (1, 1)′ |X

)
= 1 is a simultaneous move game, and P

(
O = (1, 2)′ |X

)
= 1 is a sequential game.

The first two tables are estimates when the Data Generating Process (DGP) follows a simultaneous move,
and the last two tables are estimates when the DGP follows a sequential move. Simultaneous (Misspecified)
means that a simultaneous game (DGP) is treated as a sequential game (in estimation), and Sequential
(Misspecified) means that a sequential game (DGP) is treated as a simultaneous game (in estimation). The
number of simulations is 1000. The estimates are computed by the sample mean and the sample standard
error of 1000 estimated values.
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are also county-specific variables, including county population, retail sales per capita, percentage of
the urban population, regional dummies, the number of small stores, and the number of Walmart
and Kmart stores in markets that are not part of the sample. The summary statistics are available
in Table 2 of Jia (2008). The current paper only uses the most recent sample in 1997.

Use subscripts W and K to indicate Walmart and Kmart, and assume the following payoff
structure:

Walmart\Kmart Entry (SK = 1) Exit (SK = 0)

Entry (SW = 1)
(
β0W +X ′Wβ1W + ∆W − εW ,
β0K +X ′Kβ1K + ∆K − εK

)
(β0W +X ′Wβ1W − εW , 0)

Exit (SW = 0) (0, β0K +X ′Kβ1K − εK) (0, 0)

Table 4: The Payoff Structure of Walmart and Kmart

The payoff function of player i is ui = β0i +X ′iβ1i + S−i∆i − εi for i = W,K, following a linear
form as in Bresnahan and Reiss (1991), Tamer (2003), and Aradillas-Lopez (2010). For each county,
two players Walmart and Kmart compete in markets by making decisions to enter the market or
not. The payoff is linear in parameters (β0i, β1i,∆i) and is normalized to zero when Si = 0. Xi

includes the log of the county population, the log of county retail sales per capita, the percentage of
the urban population, and the number of small discount stores as common variables. There is also
a player-specific variable in Xi, the distance weighted number of player i branches in markets that
are not part of the sample. The player-specific variable works as an exclusion restriction to identify
the payoff function coefficients. The parameters β1W , β1K ,∆W ,∆K are common knowledge among
players but are not observed by econometricians. ε = (εW , εK)′ represents private information of
players in incomplete information games, and εi follows a standard Type-I extreme distribution.

I consider the three possible order of actions for two players: (1) Walmart is the first mover
and Kmart is the second mover, (2) Kmart is the first mover and Walmart is the second mover, (3)
Walmart and Kmart move simultaneously. The probability distribution ρO|X (Ok|X) for k = 1, 2, 3
is another parameter of interest. For simplicity, the control variables X for ρO|X are only regional
indicators: Midwest and South. Based on the dataset, each county belongs to one of three regions,
Midwest, South, or others. The Midwest dummy is 1 if a county is located in the Great Lakes,
Plains, or Rocky Mountain region. The South dummy is 1 for Southwest or Southeast regions.
Note that the Kmart Headquarters is in Midwest (Illinois), and the Walmart Headquarters is in
South (Arkansas).

The following Table 5 summarizes the estimation results of three different specifications on
the potential order of actions. The first column of Table 5 shows the estimates assuming the
simultaneous move only. The second column presents the estimates under the sequential orders
without considering the simultaneous move. The last column of Table 5 is the main result of
this empirical application. The estimates in the last column are robust to all three possible order
of actions and also to the regional level heterogeneity of the order distribution. The probability
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Simultaneous Move Sequential Move Simultaneous+Sequential
Walmart Kmart Walmart Kmart Walmart Kmart

Log Population 2.0205
(0.2051)

2.0422
(0.3739)

2.6290
(0.2243)

2.1567
(0.2062)

2.5840
(0.2981)

2.5544
(0.3393)

Log Retail Sales
per Capita

0.9744
(0.1625)

2.1261
(0.3034)

1.4394
(0.1856)

1.9640
(0.2599)

1.4665
(0.2187)

2.1796
(0.3094)

Percentage of
Urban Population

1.0858
(0.2701)

0.9940
(0.4312)

1.2483
(0.3337)

1.0260
(0.3533)

1.2476
(0.3808)

1.1590
(0.3936)

Small Stores -0.0277
(0.0270)

-0.0362
(0.0245)

-0.0724
(0.0325)

-0.0298
(0.0241)

-0.0757
(0.0352)

-0.0366
(0.0275)

# of other Walmarts -3.4444
(1.1099)

-3.7524
(0.9668)

-3.3114
(0.9876)

# of other Kmarts -0.6699
(0.9996)

-1.4352
(0.9091)

-1.6872
(1.0192)

Constant -13.5967
(1.5686)

-24.9788
(3.0105)

-18.8790
(1.6805)

-23.2951
(2.4164)

-18.9547
(2.2993)

-25.6431
(3.1450)

Interaction Effect
(∆W ,∆K)

-0.9934
(0.5338)

-0.6866
(1.3232)

-1.8410
(0.2543)

-1.4281
(0.2245)

-2.2053
(0.6367)

-2.6667
(0.5309)

Midwest Walmart → Kmart 0.0827
(0.1372)

0.0018
(0.0158)

Kmart → Walmart 0.9173
(0.1372)

0.4705
(0.1408)

Simultaneous 0.5278
(0.1390)

South Walmart → Kmart 0.9999
(0.0000)

0.2449
(0.2006)

Kmart → Walmart 0.0001
(0.0000)

0.0042
(0.0606)

Simultaneous 0.7509
(0.2051)

Other Regions Walmart → Kmart 0.0011
(0.0171)

0.0450
(0.0960)

Kmart → Walmart 0.9989
(0.0171)

0.6836
(0.1956)

Simultaneous 0.2714
(0.1956)

Table 5: Estimation of the Entry Game between Walmart and Kmart

Note: A two player game has three order of actions: (1) Walmart→ Kmart (Walmart is the first mover), (2)
Kmart→Walmart (Kmart is the first mover), (3) Walmart and Kmart move simultaneously. The estimated
probability mass of each order of action and the standard error in the parenthesis are provided in the second
and third column.
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distribution of the order significantly varies with the value of regional dummies.
The result in Table 5 presents two noteworthy points. First, the estimates of the strategic

interaction (∆W ,∆K) are significantly different depending on the specification about the order
of actions. The interaction effects under the conventional simultaneous game specification are
(∆W ,∆K) = (−0.9934,−0.6866), but the new estimates considering the mixed order of actions are
(∆W ,∆K) = (−2.2053,−2.2667). The different estimates imply different counterfactual outcomes.
For example, under the simultaneous game assumption, a 10% increase in Kmart’s entry probability
results in a 3.3% decrease in Walmart’s entry probability at the mean level of county-specific
regressors. However, the new estimates with the mixed order of actions imply a 6.8% decrease in
Walmart’s entry probability under the same situation. The example suggests that the strategic
interaction effects between Walmart and Kmart can be larger than the effects predicted in the
previous literature.

Second, the estimated order of actions shows that Walmart and Kmart compete with each
other in sequential way for a significant portion of the markets. It is well-known that Kmart is a
nationwide retailer with a longer history than Walmart. According to the estimates, Kmart is the
first mover in many counties except southern counties, taking 47.05% of the midwestern counties
and 68.36% of other regions except midwestern and southern counties. Walmart is the first mover in
southern counties where its Headquarters is located, taking 24.49% of the markets in South. Both
simultaneous and sequential type of markets account for nonnegligible portion of the markets. The
result confirms that the structural estimation of an empirical game without considering the order
of actions may cause a substantial bias in estimates and a distorted counterfactual analysis.

6 Conclusion

This paper discusses the identification and estimation of sequential games with incomplete inform-
ation. I specify a sequential game model of incomplete information, assuming that the observed
market outcome follows a PBNE. The structural model presents three main parameters of interest,
including the player’s payoff parameter, the order of actions, and the equilibrium selection mech-
anism.

The main finding of the paper consists of three parts. First, I provide some necessary and
sufficient conditions for identifying the structural parameters, exploiting that the number of PBNE
and the number of the possible order of actions are finite. Second, I propose the SMD estimator
for the structural parameters based on identification. The consistency and asymptotic normality
of the suggested estimator are verified in the context of Ai and Chen (2003) and Chen and Pouzo
(2015). Third, Monte Carlo simulations and an empirical application to the Walmart-Kmart entry
game highlight the importance of correct specification on the order of actions.

The future research regarding this paper is the applicability of these theoretical findings to
empirical settings, including a sequential entry game or a bargaining game between groups of
players. Furthermore, the sequential game structure can apply to models with dynamics so that
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the general setting of my model on sequential games can be extended to finite or infinite horizon
dynamic games. I leave these topics for future research.
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Appendix

A Proof of Lemmas

A.1 Proof of Lemma 2.1

By definition, a PBNE consists of equilibrium probabilities in equation (3). First, I show that
the equation (3) is a function of P (X,O) and the model primitives. Next, I verify the existence
of P (X,O) solving the equation (3) and the number of solution is finite. The Assumption 2.1−1
implies that the joint probability of εj for j = 1, . . . , N are independent conditional on common
variables (X,O). The history vector so(i)− in the information set Jo(i) =

(
s
o(i)
− , X,O

)
fully depends

on εj |X,O for o (j) < o (i) so that εi|X,O is independently realized with respect to so(i)− . Then
π̄i
(
a,Jo(i);β0

)
in equation (3) is

π̄i
(
a,Jo(i);β0

)
=
∑
a
o(i)
+

πi
(
a, a

o(i)
+ ,Jo(i);β0

) ∏
j 6=i,o(j)≥o(i)

P
(
sj = aj

∣∣Jo(j)) , (11)

where
∏
j 6=i,o(j)≥o(i) P

(
sj = aj |Jo(j)

)
= P

(
s
o(i)
+ = a

o(i)
+ |Jo(i)

)
. The joint equilibrium probability for

players j 6= i with o (j) ≥ o (i), P
(
s
o(i)
+ = a

o(i)
+ |Jo(i)

)
is represented by the components of P (X,O).

The equations of P
(
si = a|Jo(i)

)
for all i ∈ I show that a PBNE is defined by P (X,O) under the

given payoff structure β0.
The existence of a PBNE is verified by a fixed point approach. Note that each equation (3) is

a continuous mapping of equilibrium probabilities{
P
(
si = a|Jo(i)

)
,

{
P
(
sj = aj |Jo(j)

) ∣∣∣∣j 6= i, o (j) ≥ o (i) , aj ∈ A
}}

,

for a ∈ A and all possible history vectors in Jo(i) and Jo(j). The probabilities construct L + 1

equations for each player and history vector, and each player i has (L+ 1)
∑o(i)−1

t=1 nt possible history
vectors conditional on X and O. The total number of equations are the same as the number of
unknown equilibrium probabilities. By Assumption 2.1−2, P (X,O) is continuous on a closed ball
of a Euclidean space so that the existence of the solution is guaranteed by the Brouwer’s Fixed
Point Theorem.

Note that equilibrium probabilities P (X,O) may not be singleton: there could be multiple
equilibria. Under Assumption 2.1, Theorem in Section 4 of Haller and Lagunoff (2000) showed
that the number of PBNE is finite for almost all games. They derived the finiteness of MPE on
almost every stochastic games with a finite number of players, discrete and finite action sets. The
sequential game in the current paper is a special case of a stochastic game discussed in Haller and
Lagunoff (2000).
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A.2 Proof of Lemma 2.2

The proof follows similar steps in Hotz and Miller (1993) by showing that the sequential game
model in this paper satisfies Proposition 1 of Hotz and Miller (1993). Fix a player i ∈ I and her
information set Jo(i). Then the system of equations is


P
(
si = a1|Jo(i)

)
· · ·

P
(
si = aL|Jo(i)

)
 =


Fa1

(
π̄i
(
a1,Jo(i);β0

)
, . . . , π̄i

(
aL,Jo(i);β0

))
· · ·

FaL

(
π̄i
(
a1,Jo(i);β0

)
, . . . , π̄i

(
aL,Jo(i);β0

))
 ,

which has L equations with L unknowns, provided with continuous mappings Fa1 , . . . , FaL . The
mappings are continuous by Assumption 2.1−2. The mapping does not include π̄i

(
0,Jo(i);β0

)
= 0

by Assumption 2.2. Define

Pi (X,O) ≡
(
P
(
si = a1|Jo(i)

)
, . . . , P

(
si = aL|Jo(i)

))′
Π̄i (X,O) ≡

(
π̄i
(
a1,Jo(i);β0

)
, . . . , π̄i

(
aL,Jo(i);β0

))′
,

and apply the Inverse Function Theorem (IFT), then it is sufficient to check whether Fa1 , . . . , FaL are
differentiable with respect to each π̄i

(
a,Jo(i);β0

)
. If all CDFs are differentiable almost everywhere,

the IFT implies that the joint operator F = (Fa1 , . . . , FaL) has a differentiable inverse operator F−1

such that F◦F−1 = F−1◦F = I where I is the identity operator. Then the uniqueness of the operator
F guarantees a unique bijection mapping between Pi (X,O) and Π̄i (X,O). By Assumption 2.1,
each Fa is differentiable almost everywhere.

The unique one-to-one correspondence can be extended for all i ∈ I and Jo(i) without loss of
generality. Thus the unique mapping between P (X,O) and Π̄ (X,O) holds for X and O almost
everywhere.

B Identification

B.1 Proof of Theorem 3.1

For structural parameters
(
β0, ρO|X

)
, recall equation (5),

P (s = α|X) =
No∑
l=1

n∏
i=1

P
(
si = αi|Jol(i);β0

)
ρO|X (Ol|X) .

The observed conditional choice probability P (s = α|X) is a function of
(
β0, ρO|X

)
. By defin-

ition, P (s = α|X) is a weighted average of equilibrium probabilities
∏n
i=1 P

(
si = αi|Jol(i);β0

)
where each equilibrium probability P

(
si = αi|Jol(i);β0

)
is known up to the finite dimensional
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parameter β0. Denote a vector of conditional choice probabilities for (L+ 1)N joint actions by

Q (X) ≡
(
P
(
s = α1|X

)
, . . . , P

(
s = α(L+1)N−1|X

)
, 1
)′
,

and the probability distribution of the order of actions by

ρ0 (X) ≡
(
ρO|X (O1|X) , . . . , ρO|X (ONo |X)

)
∈ PO.

Then the equation (5) is a set of equations

Q (X) = P (X;β0) ρ0 (X) ,

where P (X;β0) is a matrix of equilibrium probabilities

P (X;β0) ≡



P
(
s = α1|X,O1;β0

)
· · · P

(
s = α1|X,ONo ;β0

)
P
(
s = α2|X,O1;β0

)
· · · P

(
s = α2|X,ONo ;β0

)
· · · · · · · · ·

P
(
s = α(L+1)N−1|X,O1;β0

)
· · · P

(
s = α(L+1)N−1|X,ONo ;β0

)
1 · · · 1


.

The last row of the matrix P (X;β0) implies a constraint that
∑No
l=1 ρO|X (Ol|X) = 1. As far as

the nonlinear system of equations Q (X) = P (X;β0) ρ0 (X) has a unique solution at β = β0 ∈ B
and ρ0 (X) ∈ PO, the model is identified. By Assumption 3.1, the system of equations Q (X) has a
unique solution (β0, ρ0 (X)) for almost all X by Rouché-Capelli theorem. The full rank condition
of P (X;β0) implies a necessary condition of identification, (L+ 1)N ≥ No where No is the number
of possible orders of actions.

B.2 Proof of Corollary 3.2

Assumption 3.2 suggests an exclusion restriction on the order of actions. Suppose (L+ 1)N < No

so that a necessary condition of identification is violated. The necessary order condition of iden-
tification is weakened as a result of the exclusion restrictions. The exclusion restriction implies
that ρO|X (O|X) = ρO|X (O|Xs). Then an instrumental variable Xv with a discrete support{
x1
v, . . . , x

Nv
v

}
generates additional equations

Q (X) = P (Xs;β0) ρO (Xs) ,

where P (Xs;β0) =
[
P
((
Xs, x

1
v

)
;β0
)′
, . . . ,P

((
Xs, x

Nv
v

)
;β0
)′]′

∈ MNv(L+1)N×No . The probab-
ility of unobserved heterogeneity ρO|X (O|X) only depends on the subset of X. Then an ad-
ditional variation of X still implies (L+ 1)N conditional moments, while the number of addi-
tional unknown components is fixed. Without the overlapped equations

∑No
l=1 ρ

(
Ol|Xs, x

1
v

)
=
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∑No
l=1 ρ

(
Ol|Xs, x

Nv
v

)
= 1, the necessary condition with active equations is Nv (L+ 1)N −Nv + 1 ≥

No.
For example, consider a three-player game with binary actions {0, 1}. The number of all possible

orders is No = 13. The necessary order condition in the general case is (L+ 1)N = 8 < 13 = No

so that ρ0 (X) cannot be identified. Under the exclusion restriction, the order condition becomes
7Nv ≥ 12 so that an instrumental variable Xv with at least two values satisfies the necessary
condition of identification. Similarly, a four-player game has at most No = 75 different order of
actions so that the order condition holds with 15Nv ≥ 74. The number of support points of Xv has
to be Nv ≥ 5.

In the cases of fully sequential actions that only one player is assigned for each stage, there
are N ! order of actions, and the order condition becomes Nv

(
(L+ 1)N − 1

)
≥ N ! − 1. The fully

sequential actions do not generate multiple equilibria since the backward induction with a finite
number of players implies a unique equilibrium probability. Suppose a binary game L = 1, then
the required variation of Xv should be Nv ≥ 2 for a four-player game, Nv ≥ 4 for a five-player
game, and Nv ≥ 12 for a six-player game. The order condition can be more relaxed by additional
constraints on the possible order of actions, e.g., Player 2 cannot move earlier than Player 1.

B.3 Proof of Theorem 3.2

The proof is similar as Theorem 3.1 in which the number of unobserved heterogeneity types is Nκ

instead of No. The Rouché-Capelli theorem implies that a necessary and sufficient condition of
identification is rank (P ′ (X;β)) = rank ([P ′ (X;β) , Q (X)]) = Nκ for almost all X ∈ X only at
β = β0 ∈ B.

Suppose β0 and P (κ = k|X) for k = 1, . . . , Nκ are identified. The next step is to show that
λτ |X,O and ρO|X are separately identified from P (κ = k|X). Note that λτ |X,O and ρO|X are discrete
probability mass functions. Then,

∑{
k:τ∈

{
τX,Ol,1,...,τX,Ol,B(X,Ol)

}
,O=Ol

}P (κ = k|X) =
B(X,Ol)∑
k=1

λτ |X,O (τX,Ol,k) ρO|X (Ol|X) = ρO|X (Ol|X) ,

because
∑B(X,Ol)
k=1 λτ |X,O (τX,Ol,k) = 1. Next, let the kth point of unobserved heterogeneity indicate

τ = τX,Ol,m and O = Ol for m ∈
{

1, . . . , τX,Ol,B(X,Ol)
}
and l ∈ {1, . . . , No}.

λτ |X,O (τX,Ol,m) =
λτ |X,O (τX,Ol,m) ρO|X (Ol|X)

ρO|X (Ol|X) = P (κ = k|X)∑{
k′:τ∈

{
τX,Ol,1,...,τX,Ol,B(X,Ol)

}
,O=Ol

} P (κ = k′|X) ,

provided that ρO|X (Ol|X) > 0.
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C Estimation and Inference

C.1 Proof of Theorem 4.1

The consistency of θ̂n verifies assumptions for Lemma 3.1 of Ai and Chen (2003). I mainly show
that the model with conditional moments in equation (9) satisfies Assumptions 3.1 to 3.7 of Ai and
Chen (2003).

Assumptions 3.1 and 3.2−(i) of Ai and Chen (2003) matches to Assumption 4.1 of the current
paper. The assumption includes standard assumptions for nonparametric sieve estimation. The
observables (sm, Xm) for m = 1, . . . , n are i.i.d., the support of X is compact, and the probab-
ility density function of X is bounded by Assumption 4.1. Assumption 3.2−(i) corresponds to
Assumption 4.1−3. The bounded eigenvalues of E

[
pJn (X) pJn (X)′

]
depend on the choice of sieve

basis. Any orthonormal sieve basis function satisfies the condition as E [pj (X) pk (X)] = 1 if j = k

and E [pj (X) pk (X)] = 0 if j 6= k. For Assumption 3.2−(ii) I assume that pJn (X) is a vector of
tensor-product Fourier series or B-spline of order γ′ satisfying γ′ > dx/2 + 1. Then Assumption
3.2−(ii) holds by section 2.3 of Chen (2007).

Assumption 3.3 of Ai and Chen (2003) states that θ0 is identified. Assumptions 2.1−3.2 in
Theorems 3.1−3.2 show conditions for identification of θ0. Assumption 3.4 of Ai and Chen (2003)
holds by specifying the identity weight matrix I for the sieve minimum distance criterion function.

Assumption 3.5 of Ai and Chen (2003) is satisfied by the smoothness condition on the non-
parametric parameter of interest. hk ∈ Hk for k = 1, . . . , Nκ is a Hölder space with smoothness
parameter γ > dx/2 by Assumption 4.2. Proposition 3.2 of Ai and Chen (2003) confirms that Hk is
compact under the strong norm ‖·‖s. Under the assumption that pKn (X) is tensor-product Fourier
series or B-spline, Section 2.3 of Chen (2007) also verifies that for any θ ∈ Θ, there exists θn ∈ Θn =
B ×Hn such that ‖θn − θ0‖s = maxk=1,...,Nκ supX∈X |h0,k (X)− hk,n (X)| = O

(
K
−γ/dx
n

)
= o (1).

Assumption 3.6−(i) of Ai and Chen (2003) requires the boundedness of the conditional moments
and Hölder continuity of ` (Z, θ) in θ ∈ ×. The conditional moment E [‖` (Z, θ0)‖E |X] is bounded
as the conditional moment consists of probability mass functions.

E [|`j (Z, θ0)| |X] =
∣∣∣∣∣P (s = αj |X

)
−

Nκ∑
k=1

N∏
i=1

P (k)
(
si = αji |Jok(i);β0

)
h1
k (X)

∣∣∣∣∣
≤
∣∣∣P (s = αj |X

)∣∣∣+ ∣∣∣∣∣
Nκ∑
k=1

N∏
i=1

P (k)
(
si = αji |Jok(i);β0

)
h1
k (X)

∣∣∣∣∣
≤ 1 + 1 = 2,

for j = 1, . . . , (L+ 1)N . The number of actions L and the number of players N are finite so
that E [‖` (Z, θ0)‖E |X] is bounded as well. Next, ` (Z, θ) is Hölder continuous since for any θ1 =
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(
β1, h1

1, . . . , h
1
Nκ

)
, θ2 =

(
β2, h2

1, . . . , h
2
Nκ

)
∈ Θ,

∣∣∣`j (Z, θ1
)
− `j

(
Z, θ2

)∣∣∣
=
∣∣∣∣∣
Nκ∑
k=1

(
N∏
i=1

P (k)
(
si = αji |Jok(i);β1

)
h1
k (X)−

N∏
i=1

P (k)
(
si = αji |Jok(i);β2

)
h2
k (X)

)∣∣∣∣∣
≤
∣∣∣∣∣
Nκ∑
k=1

N∏
i=1

P (k)
(
si = αji |Jok(i);β1

) (
h1
k (X)− h2

k (X)
)∣∣∣∣∣

+
∣∣∣∣∣
Nκ∑
k=1

(
N∏
i=1

P (k)
(
si = αji |Jok(i);β2

)
−

N∏
i=1

P (k)
(
si = αji |Jok(i);β1

))
h2
k (X)

∣∣∣∣∣
≤

Nκ∑
k=1

(∣∣∣h1
k (X)− h2

k (X)
∣∣∣+ ∣∣∣∣∣

N∏
i=1

P (k)
(
si = αji |Jok(i);β2

)
−

N∏
i=1

P (k)
(
si = αji |Jok(i);β1

)∣∣∣∣∣
)

≤ C1
∥∥∥θ1 − θ2

∥∥∥
s
,

for some C1 <∞. The last inequality is from

Nκ∑
k=1

∣∣∣h1
k (X)− h2

k (X)
∣∣∣ ≤ Nκ max

k=1,...,Nκ
sup
X∈X

∣∣∣h1
k (X)− h2

k (X)
∣∣∣ ,

and

Nκ∑
k=1

∣∣∣∣∣
N∏
i=1

P (k)
(
si = αji |Jok(i);β2

)
−

N∏
i=1

P (k)
(
si = αji |Jok(i);β1

)∣∣∣∣∣ ≤ C2Nκ

∥∥∥β1 − β2
∥∥∥
E
,

where C2 = maxk∈{1,...,Nκ} supβ∈B,Jok(1),...,Jok(N)
∂
∂β

∏N
i=1 P

(k)
(
si = αji |Jok(i);β

)
< ∞. C2 is uni-

formly bounded by Assumption 4.3 since the derivative of the equilibrium probability function,
∂
∂β

∏N
i=1 P

(k)
(
si = αji |Jok(i);β

)
is continuous on a compact set of Euclidean space. Let C1 =

max {Nκ, C2Nκ}, then ∣∣∣`j (Z, θ1
)
− `j

(
Z, θ2

)∣∣∣ ≤ C1
∥∥∥θ1 − θ2

∥∥∥
s
,

where the strong norm is defined by∥∥∥θ1 − θ2
∥∥∥
s

=
∥∥∥β1 − β2

∥∥∥
E

+ max
k=1,...,Nκ

sup
X∈X

∣∣∣h1
k (X)− h2

k (X)
∣∣∣ .

The same proofs for j = 1, . . . , (L+ 1)N implies that ` (Z, θ) is Hölder continuous in θ ∈ Θ.
Assumption 3.7 of Ai and Chen (2003) compares the number of unconditional moments and

that of unknown parameters. There are (L+ 1)N joint actions and each joint action is associated
with Jn sieve basis functions. The number of unknown parameters includes the payoff function
parameter β0 ∈ Rdβ and Nκ nonparametric probability mass functions hk (X) = P (κ = k|X) for
k = 1, . . . , Nκ. Each hk (X) is approximated by Kn sieve basis functions. Thus (L+ 1)N Jn should
be at least as large as dβ +NκKn. The remaining parts in Assumption 3.7 are directly verified by
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Assumption 4.4.
With the verification of Assumptions 3.1 to 3.7, Lemma 3.1 of Ai and Chen (2003) implies that∥∥∥θ̂n − θ0

∥∥∥
s

= op (1). θ̂n is a consistent estimator of θ0 with respect to the strong norm ‖·‖s.

C.2 Proof of Theorem 4.2

This section discusses asymptotic normality of the SMD estimator θ̂n, focusing on the parametric
part β̂n of the structural parameters. Note that the asymptotic normality result provided in this
section is a special case of Chen and Pouzo (2015): see Appendix A of Chen and Pouzo (2015). I
verify the remaining assumptions for asymptotic normality results presented in Ai and Chen (2003).
Assumptions 3.1−3.9 and 4.1−4.6 of Ai and Chen (2003) will be discussed.

The first set of assumptions, Assumptions 3.1−3.9, relates to the convergence rate of the SMD
estimator. Assumptions 3.2−(iii) and 3.5−(iii) of Ai and Chen (2003) restricts that the number of
sieves does not increase too fast. A function in a Hölder space with smoothness parameter γ > dx/2
can be approximated by a tensor-product B-spline of order γ′ with γ′ > dx/2 + 1. Assumption
4.5−3 guarantees the required rate of convergence J−γ/dxn = K

−γ/dx
n = o

(
n−1/4

)
. Assumption

3.4−(iii) holds with an identity weight matrix.
Assumptions 3.6−(iii) and (iv) follow the established proof in in Section C.1. Each `j (Z, θ)

for j = 1, . . . , (L+ 1)N is bounded by 2 for all Z and θ ∈ B × Hn. The smoothness condition in
Assumption 4.2 applies to verify Assumption 3.6−(iv).

Assumption 3.7−(ii) is directly implied by Assumption 4.5−3. supx∈X
∥∥∥pJn (x)

∥∥∥
E

= J
1/2
n since

the basis function is a tensor-product B-spline of order γ′, therebyKn×logn×
(
supx∈X

∥∥∥pJn (x)
∥∥∥
E

)2
×

n−1/2 = o (1) is equivalent to JnKn logn = o
(
n1/2

)
. For Assumption 3.8, define N (ε,Θn, ‖·‖s) by

the bracketing number, or the minimum number of ε-brackets to cover Θn under the strong norm
‖·‖s. A Hölder space approximated by splines satisfies the entropy number log (N (ε,Θn, ‖·‖s)) =
C3Kn log (1/ε) ≤ C3Kn log (Kn/ε) for some positive constant C3 so that Assumption 3.8 of Ai and
Chen (2003) is also verified.

Assumption 3.9 of Ai and Chen (2003) holds by pathwise differentiability of ` (Z, θ) at θ = θ0.
Note that ` is linear in h and nonlinear in β. I focus on a component of ` (Z, θ) and fix a `j (Z, θ).
Denote θ = (β′, h′)′ ≡

(
β1, β2, . . . , βdβ , h1, . . . , hNκ

)′
. The pathwise derivative of `j (Z, θ) at the

direction [θ − θ0] evaluated at θ0 is defined by

d`j (Z, θ0)
dθ

[θ − θ0] ≡ d`j (Z, (1− τ) θ0 + τθ)
dτ

∣∣∣∣
τ=0

=
Nκ∑
k=1

∂

∂β′
P (k)

(
s = αj |Jok(i);β0

)
(β0 − β)h0,k (X)

+
Nκ∑
k=1

P (k)
(
s = αj |Jok(i);β0

)
(h0,k (X)− hk (X)) ,

provided that the equilibrium probability P (k)
(
s = αj |Jok(i);β0

)
is continuously differentiable at
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β0 ∈ B by Assumption 4.3. Next, for a metric

∥∥∥θ1 − θ2
∥∥∥ ≡

√√√√E [E [d` (Z, θ0)
dθ

[θ1 − θ2]
∣∣∣∣X]′E [d` (Z, θ0)

dθ
[θ1 − θ2]

∣∣∣∣X]
]

where d`(Z,θ0)
dθ

[
θ1 − θ2] ≡ d`(Z,θ0)

dθ

[
θ1 − θ0

]
− d`(Z,θ0)

dθ

[
θ2 − θ0

]
,

‖θ − θ0‖2 = E

[
E

[
d` (Z, θ0)

dθ
[θ − θ0]

∣∣∣∣X]′E [d` (Z, θ0)
dθ

[θ − θ0]
∣∣∣∣X]

]
.

Note that E [` (Z, θ0) |X] = 0, hence

E [` (Z, θ) |X]

= E [` (Z, θ)− ` (Z, θ0) |X]

=
Nκ∑
k=1

P (k)
(
s = αj |Jok(i);β

)
hk (X)−

Nκ∑
k=1

P (k)
(
s = αj |Jok(i);β0

)
h0,k (X)

=
Nκ∑
k=1

∂

∂β′
P (k)

(
s = αj |Jok(i); β̄

)
(β − β0)hk (X) +

Nκ∑
k=1

P (k)
(
s = αj |Jok(i);β0

)
(h0,k (X)− hk (X)) ,

for some β̄ = (1− τ̄)β0 + τ̄β with τ̄ ∈ [0, 1]. By definition of d`j(Z,θ0)
dθ [θ − θ0] and E [` (Z, θ) |X],

c1E
[
E [` (Z, θ) |X]′E [` (Z, θ) |X]

]
≤ ‖θ − θ0‖2

≤ c2E
[
E [` (Z, θ) |X]′E [` (Z, θ) |X]

]
,

holds for some c1, c2 > 0 if ∂
∂β′P

(k)
(
s = αj |Jok(i); β̄

)
is uniformly bounded. Assumptions 4.2−4.3

imply that E
[
E [` (Z, θ) |X]′E [` (Z, θ) |X]

]
and ‖θ − θ0‖2 are almost equivalent for all θ ∈ Θn with

‖θ − θ0‖2s = o (1).
The next set of conditions, Assumptions 4.1−4.6 of Ai and Chen (2003), is relevant to the

asymptotic distribution of the SMD estimator. Assumption 4.1 of Ai and Chen (2003) is directly
verified by Assumption 4.6. The remaining parts of the proof rely on the smoothness conditions
implied by Assumptions 4.2−4.3. The Hölder smoothness of Assumption 4.2 and the corresponding
smoothness of functions in the sieve space proves Assumption 4.2. Denote the effective parameter
space Nos and its sieve space Nosn by

Nos ≡ {θ ∈ Θ| ‖θ − θ0‖ ≤Mnδn, ‖θ − θ0‖s ≤Mnδs,n}

Nosn ≡ Nos ∩Θn,

with Mn = min
{

log log (n+ 1) , log
(
δ−1
s,n + 1

)}
for some sequences Mnδn = o (1) and Mnδs,n =

MnO
(
K
−γ/dx
n

)
= o

(
n−1/4

)
.

Define W̄ = H̄ − {h0} where H̄ is the closure of the linear span of H. For each j ∈ {1, . . . , dβ}
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where dβ is the dimension of β0, and wj =
(
wj1, . . . , w

j
Nκ

)
∈ W̄ and β =

(
β1, . . . , βdβ

)′
∈ B, let

wj∗ = arg min
wj∈W̄

E

[
∆j

(
X,wj

)′
∆j

(
X,wj

)
|X
]

where

∆j

(
X,wj

)

≡


∑Nκ
k=1

(
P (k)

(
s = α1|Jok(i);β0

)
wjk (X)− ∂

∂βj
P (k)

(
s = α1|Jok(i);β0

)
h0,k (X)

)
· · ·∑Nκ

k=1

(
P (k)

(
s = α(L+1)N−1|Jok(i);β0

)
wjk (X)− ∂

∂βj
P (k)

(
s = α(L+1)N−1|Jok(i);β0

)
h0,k (X)

)
∑Nκ
k=1w

j
k (X)

 .

Denote

w∗ =
(
w1∗, . . . , wdβ∗

)
Dw∗ (X) =

[
∆1
(
X,w1∗

)
, . . . ,∆dβ

(
X,wdβ∗

)]
,

then Dw∗ (X) is the gradient matrix used for asymptotic normality of
√
n
(
β̂n − β0

)
. Since the

equilibrium probability P (k)
(
s = α1|Jok(i);β0

)
is twice continuously differentiable by Assumption

4.6 and wj∗ is Hölder continuous by the selected sieve basis function, Assumption 4.3 holds with
w∗. The envelope condition for ∆j

(
X,wj

)
is satisfied because for each element of ∆j

(
X,wj

)
with

a fixed j ∈
{

1, . . . , (L+ 1)N
}
,

∣∣∣∣∣
Nκ∑
k=1

(
P (k)

(
s = α|Jok(i);β0

)
wj∗k (X)− ∂

∂βj
P (k)

(
s = α|Jok(i);β0

)
h0,k (X)

)∣∣∣∣∣
≤Nκ max

k∈{1,...,Nκ}

(∣∣∣P (k)
(
s = α|Jok(i);β0

)
wj∗k (X)

∣∣∣+ ∣∣∣∣∣ ∂∂βj P (k)
(
s = α|Jok(i);β0

)
h0,k (X)

∣∣∣∣∣
)

≤Nκ (1 + C2) <∞,

where C2 is a finite number in Section C.1. For the next step, recall that ∂
∂β′P

(k)
(
s = α|Jok(i);β

)
and ∂2

∂β′∂βP
(k)
(
s = α|Jok(i);β

)
are uniformly bounded on β ∈ B by Assumption 4.6−2. Also by

Assumption 4.6−3,

E

[
∂

∂β′
P (k)

(
s = α|Jok(i);β

)
− ∂

∂β′
P (k)

(
s = α|Jok(i);β0

)]
= E

[
∂

∂β′∂β
P (k)

(
s = α|Jok(i); β̄

)
(β − β0)

]
≤ E

[∥∥∥∥ ∂

∂β′∂β
P (k)

(
s = α|Jok(i); β̄

)∥∥∥∥
E

]
‖β − β0‖E ≤ C3Mnδs,n = o

(
n−1/4

)
,
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for some finite number C3 and β̄ = (1− τ)β0 + τβ. Assumption 4.4 of Ai and Chen (2003) follows
that

E

[
Nκ∑
k=1

(
∂

∂β′
P (k)

(
s = α|Jok(i);β

)
βhk (X)− ∂

∂β′
P (k)

(
s = α|Jok(i);β0

)
β0h0,k (X)

)]

+ E

[
Nκ∑
k=1

(
P (k)

(
s = α|Jok(i);β

)
hk (X)− P (k)

(
s = α|Jok(i);β0

)
h0,k (X)

)]

≤Nκ max
k∈{1,...,Nκ}

E

[∣∣∣∣( ∂

∂β′
P (k)

(
s = α|Jok(i);β

)
− ∂

∂β′
P (k)

(
s = α|Jok(i);β0

))
β

∣∣∣∣hk (X)
]

+Nκ max
k∈{1,...,Nκ}

E

[∣∣∣∣ ∂∂β′P (k)
(
s = α|Jok(i);β0

)
(β − β0)

∣∣∣∣hk (X)
]

+Nκ max
k∈{1,...,Nκ}

E

[∣∣∣∣ ∂∂β′P (k)
(
s = α|Jok(i);β0

)
β0

∣∣∣∣ |hk (X)− h0,k (X)|
]

= o
(
n−1/4

)
,

because |hk (X)| ≤ 1, ‖β − β0‖E ≤ Mnδs,n = o
(
n−1/4

)
, and supx∈X |hk (x)− h0,k (x)| ≤ Mnδs,n =

o
(
n−1/4

)
. Assumptions 4.5 and 4.6 hold similarly since the equilibrium probability is twice con-

tinuously differentiable by Assumption 4.6−2. For θ0, θ ∈ Nos, and θ̄ ∈ Nosn, it is sufficient to show
that

E

[∣∣∣∣ ∂∂β′P (k)
(
s = α|Jok(i);β

) (
β0 − β̄

)
hk (X)− ∂

∂β′
P (k)

(
s = α|Jok(i);β0

) (
β0 − β̄

)
h0,k (X)

∣∣∣∣]
+E

[∣∣∣(P (k)
(
s = α|Jok(i);β

)
− P (k)

(
s = α|Jok(i);β0

)) (
h0,k (X)− h̄k (X)

)∣∣∣] = o
(
n−1/2

)
, (12)

for any equilibrium probability with a joint action α and for any kth component of the unobserved
heterogeneity.

The first term of equation (12) is bounded by

E

[∥∥∥∥ ∂

∂β′
P (k)

(
s = α|Jok(i);β

)∥∥∥∥
E

∥∥∥β0 − β̄
∥∥∥
E
‖hk − h0,k‖∞

]
+E

[∥∥∥∥ ∂

∂β′∂β
P (k)

(
s = α|Jok(i); ¯̄β

)∥∥∥∥
E

∥∥∥β0 − ¯̄β
∥∥∥
E

∥∥∥β0 − β̄
∥∥∥
E

]
= o

(
n−1/2

)
,

where ¯̄β is a convex combination of β0 and β̄, and ‖·‖∞ is the supremum norm. The second term
of equation (12) is also bounded by

E

[∥∥∥∥ ∂

∂β′
P (k)

(
s = α|Jok(i); β̌

)∥∥∥∥
E

‖β0 − β0‖E
∥∥∥h̄k − h0,k

∥∥∥
∞

]
= o

(
n−1/2

)
,

since
∥∥∥ ∂
∂β′P

(k)
(
s = α|Jok(i); β̌

)∥∥∥
E
for some β̌ = (1− τ)β0 +τβ is uniformly bounded by a constant.

The asymptotic distribution with a closed form asymptotic variance is by Theorem 4.1 of Ai
and Chen (2003),

√
n
(
β̂n − β0

)
d−→ N (0, V ) ,
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where

V = E
[
Dw∗ (X)′Dw∗ (X)

]−1
E
[
Dw∗ (X)′E

[
ρ (Z, θ0) ρ (Z, θ0)′ |X

]
Dw∗ (X)

]
E
[
Dw∗ (X)′Dw∗ (X)

]−1
.

C.3 Proof of Theorem 4.3

This section verifies additional conditions of asymptotic normality in Chen and Pouzo (2015). I
demonstrate Assumptions A.4−A.7 of Chen and Pouzo (2015) hold for the current paper, and
verify Assumption 3.5 of Chen and Pouzo (2015). Assumptions 3.1−3.4 of Chen and Pouzo (2015)
are implied by the conditions in Sections C.1 and C.2: see Corollaries A.1, A.2, and B.1 of Ai and
Chen (2003). The parameter of interest is h0,k (x) for some x ∈ X . Consider the inferential statistic

√
n
(
ĥk,n (x)− h0,k (x)

)
‖ν∗n‖sd,h

,

provided with a closed form sieve representer

ν∗n = Hhk (·)′D−1
n Ghk

Hhk (·) ≡

11×dβ , p
K′n (·) , . . . , pK′n (·)︸ ︷︷ ︸

1×NκKn


′

.

Assumptions A.4 and A.5 of Chen and Pouzo (2015) are implied by Assumptions 4.1−4.6 of the
current paper. The compactness of X and bounded eigenvalues of E

[
pJn (X) pJn (X)′

]
are from

Assumption 4.1. The uniform boundedness of supx∈X |pj (x)|is by the specification of B-spline basis
function defined on a compact set. The convergence rate Jn log (Jn) = o (n) holds with Assumption
4.5.

Next, for any δ > 0, the smoothness assumption establishes ` (Z, θ)−` (Z, θ′) = ∂
∂θ′ `

(
Z, θ̄

)
(θ′ − θ)

for some θ̄ which is a convex combination of θ and θ′. Note that
∥∥∥ ∂
∂θ′ `

(
Z, θ̄

)
(θ′ − θ)

∥∥∥
E
≤∥∥∥ ∂

∂θ′ `
(
Z, θ̄

)
(θ′ − θ)

∥∥∥
E
‖θ′ − θ‖s ≤ C ‖θ′ − θ‖s for some positive constant C4 > 0. Each `j (Z, θ) is

continuously differentiable and the derivative function is defined on a compact support, so there
exists a uniform upper bound of

∥∥∥ ∂
∂θ′ `

(
Z, θ̄

)
(θ′ − θ)

∥∥∥
E
. Therefore,

E

[
sup

θ∈Nosn,‖θ−θ′‖s≤δ

∥∥` (Z, θ)− `
(
Z, θ′

)∥∥2
E |X = x

]
≤ C2

4
∥∥θ′ − θ∥∥2

s ≤ C
2
4δ

2

satisfies the Condition A.5−(ii) of Chen and Pouzo (2015) by setting κ = 1 and K (x) = C4. The
Condition A.5−(iii), nδ2

nMnδs,n max
{
Mnδs,n

√
Cn,Mn

}
= o (1) where

√
Cn ≡

∫ 1

0

√
1 + log (N (w (Mnδs,n) ,Lon, ‖·‖L2))dw,
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with Lon ≡ {` (·, θ)− ` (·, θ0) : θ ∈ Nosn} also holds because
√
Cn = o (nα) for any α > 0 by the

sieve space specification used in Section C.2, δs,n = O
(
K
−γ/dx
n

)
= o

(
n−1/4

)
, Mn ≈ log log (n+ 1),

and δn = o
(
n−1/4

)
.

The remaining parts in Assumptions A.6 and A.7 of Chen and Pouzo (2015) are already veri-
fied in Sections C.1−C.2. Corollaries C.1−C.3 of Ai and Chen (2003) prove the conditions in
Assumptions A.6 and A.7 focusing on regular functionals. In the case of regular functionals,
‖ν∗n‖ → ‖ν∗‖ < ∞. In this section, an irregular functional h0,k (x) is the parameter of in-
terest so that the scaled sieve representer u∗n = ν∗n/ ‖ν∗n‖sd,h. Thus it is sufficient to show that
‖u∗n‖ = ‖v∗n‖ / ‖ν∗n‖sd,h → ‖ν∗‖ / ‖ν∗‖sd,h <∞ under the norms ‖·‖ and ‖·‖sd,h. Compare the ratio

‖u∗n‖ = ‖v∗n‖
‖ν∗n‖sd,h

=
G′hkD

−1
n DnD

−1
n Ghk

G′hkD
−1
n ΨnD

−1
n Ghk

,

and note that Ψn = E
[
∆n (X)′ ` (Z, θ0) ` (Z, θ0)′∆n (X)

]
≤ 4E

[
∆n (X)′∆n (X)

]
since `j (Z, θ) is

uniformly bounded by 2 for all j = 1, . . . , (L+ 1)N , Z, and θ. Σ0 (X) = E
[
` (Z, θ0) ` (Z, θ0)′ |X

]
also has the smallest eigenvalue uniformly bounded away from zero by Assumption 4.6−3, so that
‖u∗n‖ is always bounded and converges to a finite value.

Assumption 3.5 of Chen and Pouzo (2015) holds because the parameter of interest h0,k (x) is a
linear functional of the structural parameters and each h0,k is well approximated by Assumption 4.2.
Assumption 3.5−(iii) is simply derived by ‖h0,k (x)− hk,n (x)‖∞ = o

(
n−1/4

)
and ‖ν∗n‖ = O

(
n1/4

)
by Assumption 4.5−3. Lastly, the Lindeberg condition applies to Assumption 3.6−(ii). Define

S∗n =
(
d` (Z, θ0)

dθ
[v∗n]

)′
` (Z, θ0) ,

then Assumptions 4.5−4.6 imply that E
[∣∣∣∣ S∗n
‖ν∗n‖sd,h

∣∣∣∣] is uniformly bounded by a constant. For ε > 0,

lim sup
n→∞

E

( S∗n
‖ν∗n‖sd,h

)2

1
{∣∣∣∣∣ S∗n
ε
√
n ‖ν∗n‖sd,h

∣∣∣∣∣ > 1
} = 0

In result, Theorem 4.3 is proved.

C.4 Proof of Theorem 4.4

In this section I demonstrate a set of sufficient conditions for Theorem 4.4. Assumption 4.1 of
Chen and Pouzo (2015) summarizes the required conditions in addition to the conditions verified
in Sections C.2 and C.3. The current paper assumes a linear functional h0,k (x) for x ∈ X as a
parameter of interest. The weight matrix of the proposed SMD estimator is an identity matrix.
Thus Assumptions 4.1−(i) and (iii) directly match to the setup in this paper.
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Define the plug-in estimator for the sieve gradient matrix ∆̂n (X) by

∆̂n (X) ≡
[
∆̂β0 (X) , ∆̂h0,n (X)

]
∆̂β0 (X) ≡

Nκ∑
k=1

∂

∂β′
P (k)

(
X,O; β̂n

)
ĥn (X)

∆̂h0,n (X) ≡
[
P (1)

(
X,O; β̂n

)
⊗ pK′n (X) , . . . , P (Nκ)

(
X,O; β̂n

)
⊗ pK′n (X)

]
,

and V̄n =
(
B × H̄n

)
− {θ0} where H̄n is the closure of the linear span of Hn. Denote V̄ 1

n ≡{
v ∈ V̄n| ‖v‖ = 1

}
.

Firstly I prove Assumption 4.1−(ii) and (v) of Chen and Pouzo (2015):

sup
v1,v2∈V̄ 1

n

∣∣∣〈v1, v2〉n,I − 〈v1, v2〉I
∣∣∣ = op (1)

sup
v∈V̄ 1

n

∣∣∣〈v, v〉n,Σ − 〈v, v〉Σ∣∣∣ = op (1) ,

where I = In,m is an identity matrix, Σn,m = `
(
Zm, θ̂n

)
`
(
Zm, θ̂n

)′
, Σ = ` (Z, θ0) ` (Z, θ0)′, and

〈v1, v2〉n,Π ≡
1
n

n∑
m=1

d`
(
Zm, θ̂n

)
dθ

[v1]

′Πn,m

d`
(
Zm, θ̂n

)
dθ

[v2]


〈v1, v2〉Π ≡ E

[(
d` (Z, θ0)

dθ
[v]
)′

Π
(
d` (Z, θ0)

dθ
[v]
)]

.

Denote that supZ∈Z,θ′∈Θ supv∈V̄ 1
n

∣∣∣d`(Z,θ′)dθ [v]
∣∣∣ ≤ C6 for a positive constant C6 > 0 by the smooth-

ness condition in Assumptions 4.2−4.3. Also for some θ̄n which is a convex combination of θ0 and
θ̂n and C7 > 0,∥∥∥∥∥∥

d`
(
Z, θ̂n

)
dθ

[v]− d` (Z, θ0)
dθ

[v]

∥∥∥∥∥∥
E

=

∥∥∥∥∥∥
d`
(
Z, θ̄n

)
dθdθ′

(
θ̂n − θ0

)
[v]

∥∥∥∥∥∥
E

≤

∥∥∥∥∥∥
d`
(
Z, θ̄n

)
dθdθ′

∥∥∥∥∥∥
E

‖v‖
∥∥∥θ̂n − θ0

∥∥∥
s

≤

∥∥∥∥∥∥
d`
(
Z, θ̄n

)
dθdθ′

∥∥∥∥∥∥
E

∥∥∥θ̂n − θ0
∥∥∥
s

≤ C7
∥∥∥θ̂n − θ0

∥∥∥
s
,

by the Hölder condition. Also for Σ̄ = ` (Z, θ) ` (Z, θ)′, supZ,θ
∥∥∥Σ̄∥∥∥

E
≤ C8 by Assumption (4.6) that

the smallest and the largest eigenvalues of Σ0 (X) are bounded and bounded away from zero.
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For any v1, v2 ∈ V̄ 1
n ,

sup
v1,v2∈V̄ 1

n

∣∣∣〈v1, v2〉n,I − 〈v1, v2〉I
∣∣∣

≤ sup
v1,v2∈V̄ 1

n

∣∣∣∣∣〈v1, v2〉n,I −
1
n

n∑
m=1

(
d` (Zm, θ0)

dθ
[v1]

)′ (d` (Zm, θ0)
dθ

[v2]
)∣∣∣∣∣

+ sup
v1,v2∈V̄ 1

n

∣∣∣∣∣ 1n
n∑

m=1

(
d` (Zm, θ0)

dθ
[v1]

)′ (d` (Zm, θ0)
dθ

[v2]
)
− 〈v1, v2〉I

∣∣∣∣∣ , (13)

where the first term of equation (13) is bounded by

sup
v1,v2∈V̄ 1

n

∣∣∣∣∣∣∣
1
n

n∑
m=1

d`
(
Zm, θ̂n

)
dθ

[v1]− d` (Zm, θ0)
dθ

[v1]

′d`
(
Zm, θ̂n

)
dθ

[v2]


∣∣∣∣∣∣∣

+ sup
v1,v2∈V̄ 1

n

∣∣∣∣∣∣ 1n
n∑

m=1

(
d` (Zm, θ0)

dθ
[v1]

)′d`
(
Zm, θ̂n

)
dθ

[v2]− d` (Zm, θ0)
dθ

[v2]

∣∣∣∣∣∣
≤ C6C7

∥∥∥θ̂n − θ0
∥∥∥
s

+ C6C7
∥∥∥θ̂n − θ0

∥∥∥
s
≤ 2C6C7

∥∥∥θ̂n − θ0
∥∥∥
s

= op (1) ,

and the second term of equation (13) also uniformly converges to zero by the Uniform Law of Large
Numbers. Applying the Lemma A.1 of Ai and Chen (2003),

1
n

n∑
m=1

(
d` (Zm, θ0)

dθ
[v1]

)′ (d` (Zm, θ0)
dθ

[v2]
)

= 〈v1, v2〉I + op (1) ,

uniformly over v1, v2 ∈ V̄ 1
n under Assumption 4.1.

Next,

sup
v∈V̄ 1

n

∣∣∣〈v, v〉n,Σ − 〈v, v〉Σ∣∣∣
≤ sup

v∈V̄ 1
n

∣∣∣∣∣∣∣
1
n

n∑
m=1

d`
(
Zm, θ̂n

)
dθ

[v]

′Σn,m

d`
(
Zm, θ̂n

)
dθ

[v]

− 1
n

n∑
m=1

(
d` (Zm, θ0)

dθ
[v]
)′

Σ
(
d` (Zm, θ0)

dθ
[v]
)∣∣∣∣∣∣∣

+ sup
v∈V̄ 1

n

∣∣∣∣∣ 1n
n∑

m=1

(
d` (Zm, θ0)

dθ
[v]
)′

Σ
(
d` (Zm, θ0)

dθ
[v]
)
− 〈v, v〉Σ

∣∣∣∣∣ , (14)
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where the first term of equation (14) is bounded by

sup
v∈V̄ 1

n

∣∣∣∣∣∣∣
1
n

n∑
m=1

d`
(
Zm, θ̂n

)
dθ

[v]

′Σn,m

d`
(
Zm, θ̂n

)
dθ

[v]− d` (Zm, θ0)
dθ

[v]


∣∣∣∣∣∣∣

+ sup
v∈V̄ 1

n

∣∣∣∣∣∣∣
1
n

n∑
m=1

d`
(
Zm, θ̂n

)
dθ

[v]− d` (Zm, θ0)
dθ

[v]

′Σn,m

(
d` (Zm, θ0)

dθ
[v]
)∣∣∣∣∣∣∣

+ sup
v∈V̄ 1

n

∣∣∣∣∣ 1n
n∑

m=1

(
d` (Zm, θ0)

dθ
[v]
)′

(Σn,m − Σ)
(
d` (Zm, θ0)

dθ
[v]
)∣∣∣∣∣

≤ C6C7C8
∥∥∥θ̂n − θ0

∥∥∥
s

+ C6C7C8
∥∥∥θ̂n − θ0

∥∥∥
s

+ C2
6C

2
7

∥∥∥θ̂n − θ0
∥∥∥2

s
= op (1) .

The second term of equation (14) is also uniformly bounded by the uniform convergence in
Lemma A.1 of Ai and Chen (2003). The proof is the same as the case of equation (13), provided
that the smallest and largest eigenvalues of E

[
` (Z, θ0) ` (Z, θ0)′ |X

]
are bounded and bounded away

from zero. The smoothness condition of ` and the uniform law of large numbers imply the desired
results.

The last part is Assumption 4.1−(iv) of Chen and Pouzo (2015). Each `j (Z, θ) = `j (Z, θ0) +
∂
∂θ′ `j

(
Z, θ̄j

)
(θ − θ0) where θ̄j is a convex combination of θ0 and θ. The derivative ∂

∂θ′ `j
(
Z, θ̄j

)
exists for θ̄j ∈ Θ as the equilibrium probability matrix is a smooth function by Assumption
4.3. Using the approximation for `j (Z, θ) for j = 1, . . . , (L+ 1)N , define ` (Z, θ) = ` (Z, θ0) +
∂
∂θ′ `

(
Z, θ̄

)
(θ − θ0). Since

` (Z, θ) ` (Z, θ)′ − ` (Z, θ0) ` (Z, θ0)′

= ` (Z, θ) (` (Z, θ)− ` (Z, θ0))′ + (` (Z, θ)− ` (Z, θ0)) ` (Z, θ0)′

= ` (Z, θ)
(
∂

∂θ′
`
(
Z, θ̄

)
(θ − θ0)

)′
+
(
∂

∂θ′
`
(
Z, θ̄

)
(θ − θ0)

)
` (Z, θ0)′ ,

the Euclidean norm of the above expression satisfies∥∥∥∥∥` (Z, θ)
(
∂

∂θ′
`
(
Z, θ̄

)
(θ − θ0)

)′
+
(
∂

∂θ′
`
(
Z, θ̄

)
(θ − θ0)

)
` (Z, θ0)′

∥∥∥∥∥
E

≤ 2 ‖` (Z, θ)‖E
∥∥∥∥ ∂∂θ′ `

(
Z, θ̄

)∥∥∥∥
E
‖θ − θ0‖s ≤ C ‖θ − θ0‖s .

Each `j (Z, θ) is bounded by 2, and the derivative of `j (Z, θ) is also uniformly bounded due to the
smoothness of the equilibrium probability (Assumption 4.3). Then

sup
x∈X

E

[
sup

θ∈Nosn

∥∥∥` (Z, θ) ` (Z, θ)′ − ` (Z, θ0) ` (Z, θ0)′
∥∥∥
E
|X = x

]
≤ C sup

θ∈Nosn
‖θ − θ0‖E = o (1) .

Theorem 4.2 of Chen and Pouzo (2015) provides that the test statistic in Theorem 4.4 with
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a consistent plug-in variance-covariance matrix estimator is asymptotically normal under the as-
sumptions verified above.
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