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Abstract

Many differentiated products have key attributes that are high-dimensional (e.g.,

design, text). Quantifying these attributes is important for economic analyses. This

paper considers one of the simplest design products, fonts, and quantifies their shapes

by constructing embeddings using a deep convolutional neural network. The embedding

maps a font’s shape onto a low-dimensional vector. Importantly, we verify the resulting

embedding is economically meaningful by showing that the mutual information is large

between the embedding and descriptions assigned to each font by font designers and

consumers. This paper then conducts two economic analyses of the font market. We

first illustrate the usefulness of the embeddings by a simple trend analysis of font style.

We then study the causal effect of a merger on the merging firm’s creative product

differentiation decisions by using the embeddings in a synthetic control method. We

find that the merger causes the merging firm temporarily to increase the visual variety

of font design.
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1 Introduction

1.1 Markets for Products with Unstructured Attributes

Many differentiated products considered in economic analyses have important attributes that

are unstructured. Examples are products with design elements like automobiles, houses,

furniture, and clothing. Other obvious examples are creative works like books, musics, and

movies. Unstructured attributes in these products are typically in visual or textual forms

and thus high-dimensional. More generally, products well beyond these categories are often

presented to consumers in visual and textual forms. Examples are product packages in

supermarkets and online catalogs in e-commerce (e.g., Amazon, Airbnb, Yelp, Zillow). These

visual attributes are one of the first pieces of information consumers receive along with more

structured attributes such as price and product specifications. As a result, high-dimensional

attributes are important decision factors for consumers as well as key decision variables for

producers.

1.2 Economic Models and Policy Questions

Economists are well aware of the importance of unstructured attributes. Product attributes

are an important aspect of economic models, such as discrete-choice models (McFadden

(1973), Berry et al. (1995)) and hedonic models (Rosen (1974), Bajari and Benkard (2005)).

These models treat product attributes as both low-dimensional observable variables and a

(typically scalar) unobservable variable. In these models, the scalar unobservable normally

captures the high-dimensional, unstructured attributes including design and other artistic

features.

Although this tradition has its own merits, certain policy questions are better answered

by treating unstructured attributes as observables and attempting to solve the resulting di-

mensionality problem. For example, one may ask how product differentiation in this creative

dimension affect the product’s market power or is affected by policies such as vertical integra-

tion. One can also subsequently ask how to design optimal policies for protecting the original

features of a product. Finally, one can ask how the style of products evolves over time—i.e.,

how the fashion changes—in accordance with market conditions. In this paper, we propose
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to quantify the design-oriented attributes of a product by constructing a low-dimensional

product space of them, and answer some of these questions.

1.3 Why Markets for Fonts?

In this paper, we consider a particular design product: fonts. There are a few reasons to

study the market for fonts. First, font is one of the simplest visually-differentiated products.

The shapes (i.e., two-dimensional monochrome visual information) of a fixed number of

characters mostly describe the product. These shapes are called typefaces. Second, this

visual information is simple to understand, but important in predicting the functionality and

the value of the product. Third, fonts are ubiquitous products and fonts markets are large

with frequent productions and transactions. The online marketplace we consider has over

28,000 fonts and 2,400,000 transactions in the past six years. Fourth, there are interesting

policies involved in this market, such as vertical integration and license agreements. Finally,

font is a stylized product that captures key aspects that a myriad of products in the market

have in common: design attributes. We also believe that the analytical framework of this

paper can be applied to other industries (e.g., those mentioned earlier) where unstructured

product attributes are important elements in economic analyses.

1.4 Embedding and Low-Dimensional Product Space

The main challenge in economically analyzing the market for fonts is that the main product

attributes, their shapes, are high-dimensional. To address this challenge, we represent font

shapes as low-dimensional neural network embeddings and construct a corresponding product

space. Specifically, we adapt a state-of-the-art method in convolutional neural networks

(Schroff et al. (2015); Wang et al. (2014)), where the network directly learns to map font

images to a compact Euclidean space, i.e., the embedding space. Importantly, we verify that

the resulting embedding is economically meaningful. We demonstrate that tags assigned to

each font by font designers and consumers are highly associated with our image embeddings

through the mutually shared information. Tags are word phrases that describe the fonts (e.g.,

“curly,” “flowing,” “geometric,” “organic”), and thus, we believe, represent the economic

agents’ perceptions. To calculate the mutual information, we construct word embeddings

from these tags.

Why do we consider a convolutional neural network? The convolutional neural network

is designed to capture spatial correlation between, e.g., nearby pixels or musical notes. Font

shapes involve a non-linear interaction between many neighboring pixels. Knowing just one

individual pixel provides very little information about the overall shape of a font. By consid-
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ering how neighboring pixels interact, the deep neural network outperforms other machine

learning methods such as LASSO, random forest, and boosting that use pixels or other hand-

designed features (edges, corners, etc.); see Goodfellow et al. (2016). While neural networks

are generally known to be less interpretable (Friedman et al. (2001))1, we show how an in-

terpretable embedding space can be learned through visual similarity. In particular, instead

of the attempt to interpret each embedding value, we give meanings to the distance metric

of the embedding space for subsequent economic analyses.

1.5 Economic Analyses Using the Embeddings

The low-dimensional embeddings we create can be a basis for performing various economic

analyses. This paper conducts two analyses of the font market. The key insight of our

analyses is that, given the product space constructed via embedding, firms (called foundries

in this industry) engage in Hotelling-type of spatial competition. The main decision variable

of this competition is font design as creative product differentiation.

First, we illustrate the usefulness of the embeddings by a simple trend analysis of font

style. We analyze the trend in the distance between individual font and a benchmark font, for

which we use “Averia,” the average of embeddings of all the fonts in the market. A notable

finding is that, compared to incumbent foundries, new entrants tend to create fonts that are

more experimental, further away from the average shape.

Second, we study the causal effect of a merger on the merging firm’s product differentiation

decisions by using the embeddings in a synthetic control method. We show that this treatment

effect approach is suitable in the presence of the embeddings.2 In June 2014, one of the

major font foundries is acquired by the company that owns the online marketplace. For a

causal analysis of this merger case, it is important to make a good comparison between the

merging foundry and the other untreated foundries, which is a challenge since there is only

one treated unit. To address this challenge, we use the synthetic control method (Abadie

and Gardeazabal (2003), Abadie et al. (2010)). We construct a comparable control unit

by using the embeddings as the main predictor. We find that, relative to the synthetic

control unit, the merging foundry has temporarily produced more experimental fonts after

the merger, and that this effect is statistically significant. That is, the merger results in

increased visual variety in font design of the merging firm. This possibly implies that the

merger has occurred from a preemptive motive. The treatment effect approach to study

vertical integration appears in, e.g., Hastings (2004) and Ashenfelter and Hosken (2008),

1One approach to overcome this is to consider “hand-crafted features.” However, feature selection can
generally be arbitrary and there can be arbitrarily many possible features, which hinders the interpretation.

2See Section 1.6 for more discussions on structural approaches as alternatives to this approach.

4



although they typically use difference-in-differences methods and focus on price responses.

1.6 Contributions and Related Literature

Machine Learning and Social Science Research

To our knowledge, this is the first paper to use neural network embedding for visual data in

the economic analysis of markets and industries. Glaeser et al. (2018) uses visual data from

Google Street View to predict the economic prosperity of neighborhoods. They assign scores

to street images based on human surveys on visual perception of street quality and safety.

Gross (2016) investigate how competition influences creative production in commercial logo

design competition. While Gross (2016) uses hand-crafted features to create a perceptual

hash code for comparing images, we learn image embeddings based on recent advances in

deep learning that have been shown to work extremely well for high-dimensional image data

(Krizhevsky et al. (2012); Simonyan and Zisserman (2014); He et al. (2016)).

This paper is also among the first social science studies that uses embeddings as part of

empirical analyses. As another form of unstructured data, text data have recently gained

much attention in economic analyses; see Gentzkow et al. (2019a) for a thorough review of

the machine learning applications. Kozlowski et al. (2019) have used word embeddings to

understand cultural norms. Gentzkow et al. (2019b) analyzes political polarization using

congressional speeches as text data. Hoberg and Phillips (2016) use text data from firms’

10-K product descriptions across industries to classify competing products and construct a

product location space as we do in our paper.3 Unlike their paper, however, we use image

embeddings and employ neural network as a classification method. Also, we focus on a

particular industry as opposed to multiple industries, and utilize detailed structured and

unstructured data about product offerings.

Merger and Product Differentiation

Market structures and product differentiation have been important themes in the field of

economics. In a theoretical paper, Mazzeo et al. (2018) finds the effects of a merger on product

differentiation can be ambiguous, implying that the question is more of empirical research

as in empirical industrial organization. Berry and Waldfogel (2001) document the effect

of mergers on product variety in local radio markets by exploiting the natural experiment

provided by the 1996 Telecommunications Act. Sweeting (2013) studies the dynamic aspects

of product differentiation in the radio industry. They find some evidence that increased

3In fact, our paper utilizes both image embeddings and word embeddings as part of our analysis.
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concentration increases variety. Finally, Fan (2013) finds in newspaper markets that mergers

between local competitors has effects on vertical differentiation, making firms reduce news

quality. Unlike the structural approach of these papers, Hastings (2004) and Ashenfelter and

Hosken (2008) study the effects of mergers on prices from an angle of the program evaluation

literature. We follow the latter approach in the causal analysis of merger. The latter approach

is not ideal in analyzing responses to changes in market environment that are never observed

and calculating welfare.4 Still, we believe this paper can be a good starting point to introduce

embeddings in economic analyses. All the empirical papers above use structured data.5 Our

paper is distinguished from them in that we use unstructured data of images to derive new

insights about the market, such as the effect of merger on creative product differentiation.

In the econometrics literature, structural approaches are considered in the presence of

high-dimensional controls, but mainly from structured data. Gillen et al. (2015) develop

BLP-LASSO with high-dim demographics as controls. Chernozhukov et al. (2016) consider

orthogonal machine learning with high-dimensional demand signals as controls. Related to

the latter, Chernozhukov et al. (2018) consider a robust inference of low-dimensional struc-

tural parameters in the presence of high-dimensional nuisance parameters. We are cautious

about using such methods because in our setting, design attributes are endogenous decision

variables that cannot simply be partialled-out. However, recent advances in machine learn-

ing may enable us to conduct more sophisticated policy analyses with both high-dimensional

endogenous variables and control variables; see e.g., Foster and Syrgkanis (2019). This can

be an interesting direction for future research.

Machine Vision

Recognizing letters (e.g., distinguishing handwritten “G” from “Q”) is one of the most well-

studied area of machine vision as with the MNIST database (LeCun et al. (2010)). Our

paper, however, is one of the first that applies machine vision techniques to recognizing the

style of font images (e.g., distinguishing typeface “G” from “G”), which is a more challenging

vision problem. O’Donovan et al. (2014) develop a method of searching fonts using relative

attributes. It builds on the work on attributes and whittle search by Parikh and Grauman

(2011) and Kovashka et al. (2012). Campbell and Kautz (2014) develop a procedure of learn-

ing font manifold by parametrizing font shapes and reducing the dimension of the resulting

model.

4See Angrist and Pischke (2010) and Nevo and Whinston (2010) for pros and cons of these two approaches.
5For example, Fan (2013) uses data on the number of opinion section staffs, the number of reporters, the

local news ratio, variety, the frequency of publication, and edition. Sweeting (2013) uses Neilson data on
broadcasts.
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The method of training the font embedding builds on Schroff et al. (2015) and Wang

et al. (2014), who develop a face recognition algorithm that learns embedding for images

directly in a neural network training. Schroff et al. (2015) show that their approach performs

substantially better than the earlier approaches of training a classification network for face

recognition as in Taigman et al. (2014) and Sun et al. (2015). The former approach is suitable

for our purpose, since the procedure produces embeddings as the intermediate output of the

algorithm of classification. Although we are not directly interested in the classification of

font identity, embeddings serve as our object of primary interest.

Fonts can be viewed as fashion products. Our quantitative analysis of the trend in font

style is related to, e.g., Al-Halah et al. (2017), Mall et al. (2019), and Yu and Grauman

(2019), who apply advanced machine vision techniques they develop to recognize the style of

clothes and shoes in the fashion industry and understand the trend. The analysis of visual

attributes of design products has also been considered, e.g., in Burnap et al. (2016) and

Dosovitskiy et al. (2016) using deep generative models with applications to furniture and

automobile designs.

1.7 Organization of the Paper

In the next section, we provide the background about the font industry and the online

marketplace for fonts considered in this paper. Section 3 describes the data obtained from

this market. In Section 4, we construct the embedding and the product space using the neural

network. In this section, we demonstrate that the embedding is meaningful by calculating

the mutually shared information between the font embeddings and tags. Sections 5 and 6

contain two economic analyses that utilize the embeddings. The causal analysis of merger

can be found in Section 6. Section 7 concludes.

2 Online Marketplace for Fonts

We consider the world’s largest online market place MyFonts.com that sells around 30,000

different fonts. This market is a superset of all major global online stores. MyFonts.com and

the other stores are all owned by Monotype Inc. To be precise, a font is a delivery mechanism

for typefaces. Therefore, fonts are sold as a piece of software, for which consumers purchase

a license. Licenses are protected by the End User License Agreement (EULA). There are

generally two types of license sold to consumers. A web font license allows fonts displayed

on a website, and a desktop license is for printed materials. The marketplace also serves as

a platform for third party fonts. As a result, it sells fonts designed by foundries owned by

7

https://www.myfonts.com


Figure 1: Main Page in MyFonts.com

Monotype, as well as fonts from third parties foundries.6

Figure 1 shows the main page in MyFonts.com. An example of a font family page in My-

Fonts.com is captured in Figure 2. In this market, typical consumers are other designers who

use fonts as intermediate goods. They produce printed materials (e.g., posters, pamphlets,

cards), for which a desktop license is purchased, or webpages and digital ads, for which a

web license and digital ads license are purchased, respectively. Between the data period of

2012 and 2018, around 2,400,000 purchases were made.

3 Data

3.1 Overview

We have the sample of period from 2012 to 2017. There are in total 28,659 fonts and 2,446,604

orders in the data set. The main information contained in the data set is information on

product attributes for each product with a unique ID and on transactions for each user (i.e.,

consumer) with a unique ID. In terms of high-dimensional attributes, we have images of

typefaces and tags (i.e., descriptive words assigned by producers or consumers). In terms

of structured characteristics, we have price, category types, license types, the number of

languages supported, the number of glyphs supported, the foundry and designer information,

and the date introduced in the market. There are roughly six categories: sans serif, serif,

display, handwritten, and script. There are five license types: desktop, web, apps, ePub, and

digital ads.

6A foundry is a group of designers that produce fonts.
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Figure 2: A Font Family Page in MyFonts.com

Transactions data are individual orders made by users. For each order, we have informa-

tion about the product ID, the time of purchase (by minutes), the total amount paid, and

the user characteristics such as the country and city of origin, the order history, the life span

and the total spending.

3.2 Visual Attributes

Fonts are displayed on the webpage using pangrams.7 Pangrams effectively capture important

design elements that cannot be seen in individual letters, such as spacing, deep-height, up-

height, and ligature. Figure 3 shows the examples of pangrams that roughly correspond to

the product categories (i.e., sans serif, serif, display, handwritten, and script). The format

of pangram images is a bitmap with 200 × 1000 pixels. Each pixel is a vector of 3 integers

between 0 and 255. We use 100×100 pixel (crops of) pangrams as direct inputs in the neural

network in order to mimic a consumer’s actual perception of the products.

7A pangram is a sentence that contains all the alphabet letters. In fonts markets, many different pangrams
are used, such as “The quick brown fox jumps over a lazy dog.”, “Six quite crazy kings vowed to abolish my
pitiful jousts.”, “Quincy Jones vowed to fix the bleak jazz program.”, or “Mozart’s jawing quickly vexed a
fat bishop.” Here we chose to use one of the shortest pangrams to minimize the size of the image.
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Figure 3: Examples of Pangrams (by categories)

4 Construction of Embeddings

4.1 Network Embedding

We employ a method where the network directly learns a mapping from pangram images to

a compact Euclidean space. This mapping is called an embedding. We map each pangram

to a 128-dimensional embedding. Then, L2 distance corresponds to measure of similarity of

font shape. For training the network embedding, we adapt a modern algorithm developed

by Schroff et al. (2015) for face recognition. Their approach determines the identity of a

person based on face images in two steps. In the first step, they train a deep convolutional

network to learn an embedding space of faces. The rationale is that similar faces should

occur closer in the embedding space than dissimilar faces. In the second step, they classify

the identities of the images by choosing a threshold in the space below which the embeddings

have the same identity. They show that this approach performs substantially better than

the earlier approaches of training a classification network (Taigman et al. (2014); Sun et al.

(2015)).8 Schroff et al. (2015)’s approach is suitable for our purpose. First, as detailed below,

pangram images can be naturally classified based on a structure that is analogous to that

for face images where multiple images are associated with the same identity. Second, the

procedure produces embeddings as the intermediate output of the algorithm. Although we

are not directly interested in the classification of font identity, embeddings serve as our object

of primary interest.

8The latter is an indirect approach where a classification network is trained and an intermediate bottleneck
layer (typically a dimension of 1000s) is taken to generalize face recognition beyond identities in training.
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4.2 Triplet Loss

The key idea of our strategy is to obtain positives from the same family (e.g., Helvetica) but

different styles (e.g., Helvetica Regular, Helvetica Light, Helvetica Bold, Helvetica Italic) or

crops (e.g. different words within the pangram), and negatives from different families (e.g.,

Time New Roman). The neural network then learns to group fonts that are within the same

family in the embedding space.

In practice, we accomplish this by constructing triplets of images (Weinberger et al.

(2006)). To be specific, triplet i consists of anchor xai , positive xpi , and negative xni , for which

we want the following inequality to hold during training:

||f(xai )− f(xpi )||22 + α ≤ ||f(xai )− f(xni )||22 (1)

for all (xai , x
p
i , x

n
i ) ∈ T , where α is an enforced margin. Again, an anchor is a pangram crop of

a given font family, positives are different crops of the same pangram or crops of pangrams of

different styles in the same family, and negatives are crops of pangrams of different families.

The way triplets are identified is analogous to that in the face recognition problem, where

positives are images of the same person as the anchor and negatives are images of different

persons. The margin α allows the images for one font family to stay on a manifold, while

still discriminating the images of other families.

Then, a triplet-based loss function that is minimized in the network training is

L =
N∑
i

[||f(xai )− f(xpi )||22 − ||f(xai )− f(xni )||22 + α]+.

We optimize this objective using stochastic gradient descent (SGD; Bottou (2010)). SGD

is an iterative method for optimizing an objective function, in our case, to create a reasonable

embedding space. Because our dataset is gigabytes in size, it would be too computationally

challenging to compute gradient of the entire data set and optimize using a more traditional

optimization algorithm (e.g., Nelder-Mead or the conjugate gradient method). SGD can be

regarded as a stochastic approximation of gradient descent optimization. It replaces the

actual gradient by an estimate of the gradient, based on a randomly selected subset of the

data called batches.

We use roughly 20,000 images of fonts to train the neural network. The training iteratively

improves the parameters using smaller batches of roughly 150 cropped images of fonts to

estimate the gradient and then update the parameters accordingly (Wilson and Martinez
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(2003)).9 These 150 images are structured as 50 triplets. As the gradient is evaluated at

more batches, the parameters in the network are adjusted.

Each embedding we produce has 128 dimensions. It is important to have enough dimen-

sions so that the neural network can allow for variation in the embedding space based on

the actual images. The 128 dimension was also used in the face classification task by Schroff

et al. (2015).10

4.3 Constructed Product Space

From the trained neural network, we create a 128-dimensional space of font products. To

visualize this space, we project it into a two-dimensional space using principal component

analysis (PCA). Figure 4 depicts this two-dimensional product space. Each thumbnail corre-

sponds to the embedding of each font style. For expositional purpose, it is created with the

word “Quick” that is cropped from the full pangram. By visually inspecting the space, we can

see even in this two-dimensional project that different styles of fonts are clustered together.

More specifically, we can see the right hand side of the x-axis corresponds to fonts that are

have narrower characters and the left hand side has fonts that are thicker. Additionally, the

top of the y-axis includes fonts that are visually less standard and more dramatic.

To understand how well the fonts are clustered in the 128-dimensional space, we conduct

the K-means clustering with the embedding. The result is visualized in the two-dimensional

space in Figure 5, where each colored box corresponds to a particular font cluster. Even

in this space with the dimension much lower than 128, we can see that fonts with similar

styles are clustered together. To further illustrate the result of Figure 5, Figure 6 shows the

examples of four different nearest neighbors and their corresponding pangram images.11 We

can see that visually similar fonts are near from each other in the resulting embedding space.

4.4 Internal Evaluation

First, we describe how the neural network performs in the original classification task of

identifying the font family. Although we are interested in the embeddings and not the

classification, it is important to evaluate the embeddings based on their ability to classify. If

9We cropped each image based on the number of characters in the image. For example, there are 20
characters in the first half of the pangram sentence, so to crop 5 characters, we would take 40 percent of the
pixels in the first half of the image. We tried crops with 3, 4, 6, and 7 different characters. We also tried
different cropping schemes like using the white space between characters.

10The embedding with a larger dimension would perform better, but it requires more training data to
achieve the same level of accuracy while avoiding the risk of overfitting.

11To increase the visibility, we randomly sample a smaller set of images and obtain their nearest neighbors
in the two-dimensional space.
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Figure 4: The Space for Fonts (projected onto two dimensions)

13



Figure 5: Clusters of Fonts Based on Embeddings (projected onto two dimensions)
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Figure 6: Examples of Nearest Neighbors and Corresponding Pangrams
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Crop Size (Characters) Test Set Accuracy Validation Rate FAR

7 Hard 0.8925 0.09375 0
7 Easy 0.8975 0.47875 0
6 Hard 0.8825 0.04875 0
6 Easy 0.89667 0.53875 0
4 Hard 0.86333 0.02 0
4 Easy 0.8925 0.46875 0
3 Hard 0.76417 0.00875 0
3 Easy 0.88167 0.48625 0

Table 1: Internal Validation by Accuracy, Validation Rate, and FAR

the embeddings perform poorly, then they are not likely to be a reliable product space that is

economically meaningful. As mentioned, classification is conducted by thresholding distances

between embeddings. Overall, the neural network embeddings perform well in differentiating

between fonts in different families.

To evaluate the neural network embeddings, we create test sets of triplets that the neural

network has never seen during the training. With the test sets, the task is to identify whether

the image in a triplet is a positive or negative. It is classified as a positive if its L2 distance

from the anchor in the trained embedding space is less than a pre-defined threshold (via cross

validation) and a negative otherwise. We describe the results of tests on two different test

sets. The first “easy” test set randomly samples pairs of a positive crop within the same

family as an anchor and a negative crop from different families, for which the performance is

evaluated. The second “hard” test set samples pairs of a positive crop within the same style

of a family as an anchor and a negative crop from different styles within the same family.

The analysis involves true positives (TP), true negatives (TN), false positives (FP) and

false negatives (FN). In Table 1, we provide the accuracy and validation rates for the neural

network in each of these test sets with different crop size. The accuracy is a measure of how

well the neural network embeddings do at the classification task. Overall, it gets roughly 90

percent of triplets correct.

We also analyze the trade-off between Type-I and Type-II errors in classification. The

validation rate is the true acceptance rate and is calculated as TP/(TP+FN). The false

acceptance rate (FAR) is given by FP/(TN+FP). Additionally, we provide precision and

recall curves. Precision is related to the Type-I Errors and is calculated as TP/(TP+FP).

Recall is related to the Type-II Errors and is given by the formula TP/(TP+FN). The

precision recall curve in Figure 7 shows the trade-off between these types of errors. There

exists a steeper trade-off between precision and recall in the hard test set.
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“Easy” Test Set “Hard” Test Set

Figure 7: Precision Recall Curves

Overall, all the statistics we report here show that our neural network performs well.

The low validation rate in the hard test sample suggests there is room for improvement for

differentiating between different styles.

4.5 External Verification Using Word Embedding

Although the neural network embedding performs well in terms of prediction, it does not

necessary imply the relevance to economic analyses, Next, we verify that visual attributes

captured in the resulting embedding are relevant to economic agents’ perceptions, by measur-

ing a generalized notion of correlation with “perceived” attributes. We use information from

“tags,” which are short descriptive words assigned to each font family by font designers and

consumers. Examples of tags are “curly,” “flowing,” “geometric,” “organic,” “decorative,”

and “contrast.”

These descriptive words of fonts are also high-dimensional, as there are nearly 30,000

different words in the tags. As a result, we consolidate tags that are synonyms to create

meta-tags that encompass many related words (e.g. “script” and “cursive” would be in

the same tag). To accomplish this task, we create clusters of tags using a standard word

embedding “Word2vec” (2-layer neural network) by Mikolov et al. (2013). Then, we create

clusters of tag embeddings using the K-means clustering from word embeddings. Finally, we

measure how well they match clusters of visual embeddings we use mutual information.

To do the K-means clustering of font shape, we use the 128-dimensional shape embeddings

we obtained, clustered directly into 60 clusters. To do the K-means clustering of tags, we

use 100-dimensional word embeddings, reduced to 10-dimensional and then clustered into

6 clusters.12 To evaluate how well the two clusters match, we used the normalized mutual

12For the number of clusters for image embeddings, we choose 60 clusters for two reasons. First, we use
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F W NMI(F,W )

Image Embeddings Tag Embeddings 0.473
Structured Tags Tag Embeddings 0.261

Table 2: Normalized Mutual Information between Image Clusters and Word Clusters (first
row), Compared to Baseline (second row)

information (NMI).

NMI(F,W ) =
I(F,W )

[H(F ) +H(W )]/2

In this formula F is the distribution of clusters based on shape embeddings, W is the dis-

tribution of clusters based on word embeddings, H(·) is information entropy, and I(F,W ) =

H(F ) − H(F |W ) is mutual information between F and W . The NMI can be interpreted

as how informative W is in determining F . Its value will be between 0 and 1 (0 being W

contains no information for F ). Table 2 reports the values of NMI for two different pairs of

distributions. The first row corresponds to the NMI for the image and word clusters described

above. We obtain NMI(F,W ) = 0.473, which is quite promising. To compare this value

with the baseline case, the second row of the table shows the NMI when the pre-existing

product categories are used in clustering as structured attributes instead of the image em-

beddings. In general, if images were treated as unobserved product attributes, then the

main structured attribute available in many design products are product categories. In our

context, the structured tags (i.e., sans serif, serif, display, handwritten, and script) are such

product categories defined by the font industry and assigned by the producers and users.

In this case, we obtain NMI(F,W ) = 0.261, which is roughly only a half of the value in

the first case. This indicates that the visual embeddings learned arguably capture economic

agents’ perceptions and thus can be relevant for economic analyses.

5 Trend Analysis

To illustrate the usefulness of the shape embeddings, we analyze the supply- and demand-side

trends in font style. This part also provides relevant backgrounds for the causal analysis that

the heuristic elbow method. This involves calculating the mean squared error between the data and the
cluster centers. One picks the point where you see an elbow or diminishing returns. This method is known
to be sensitive to the coordinate scale. To choose a suitable scale, we use the fact that image embeddings
had 26 = 64 different mutually exclusive tag clusters. We try to find a similar number of mutually exclusive
K-means clusters so that they would be comparable. We also select the number of tag clusters using the
elbow method. We choose the scale by trying to match the 6 pre-existing structured tags.
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Figure 8: Averia (in terms of pixel values)

follows in the next section. On the supply-side there are constant entries of new products in

the marketplace. On the demand-side there are on average more than 1,000 fonts (stably) sold

per day. Of course, demand and supply are endogenous, so the analysis is only a descriptive

analysis. We, however, believe it reveals some interesting patterns in this market.

For this analysis and the next causal analysis, we calculate the L2 distance between indi-

vidual font and a benchmark font. This distance measure is intended to capture the degree

of product differentiation.13 For the benchmark font, we introduce “Averia,” which is calcu-

lated by averaging the values of the embeddings of all the fonts existing in the market. The

average of embeddings can correspond to the average of pixel values, which will be visual-

ized as gray-scale clouds of characters. By using a threshold, one can create a monochrome

version of the latter, which is depicted in Figure 8 for illustration.14

5.1 Supply-Side Trend

We analyze the supply trend in the L2 distance from Averia. We are especially interested in

how the style of fonts newly entering the market differs from the style of incumbent fonts.

For this part, we use data for a longer time span of 2000–2017. In Figure 9, each dot in the

figure represents the daily mean (the upper panel) or median (the lower panel) distance from

Averia for a range of periods. The red horizontal line is the mean/median distance of all fonts

introduced before 2001, which we view as incumbents. The black line depicts the quarterly

moving averages for the daily mean/median for fonts introduced from 2001, which we view

as entrants. Overall, we find that entrants have font shapes that are more experimental

or innovative than incumbents, possibly to avoid competition and establish market power

distant from the incumbents in the product space.
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Figure 9: Trends in Mean/Median Distance of Incumbents (≤ 2000, in red) and New Entrants
(2001–2017)
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Figure 10: Price Distribution

5.2 Demand-Side Trend

We now analyze the trend in the L2 distance between Averia and fonts purchased by con-

sumers between 2012 and 2017.To remove the supply-driven factor, we condition on price

and focus on the price ranges of $25-35 and $35-45 where promotions are rare. This price

range is the most frequent in the market as shown in the histogram of prices in Figure 10.

Figure 11 plot the trend conditional on the price being $25-35 and $35-45. We also plot the

trend for the two major license types: desktop license and web font license. Again, each

dot represents the daily mean distance weighted by the number of purchases. We also plot

monthly moving averages.

Interestingly, in both figures, we find that fonts that are sold as desktop license is more

experimental (or less conservative) than fonts that are sold as web font license. Since both

licenses are offered for most fonts, this difference cannot be attributed to the supply-side

decision but are the result of consumer decisions.

5.3 Summary of Findings

Based on our analysis we find the following stylized facts: (i) Entrants are more innovative

than incumbents; (ii) Demand is elastic to promotions (e.g., price-elastic). Although the

timing of promotions is harder to predict and outside the scope of this analysis, we find

expensive fonts are the ones that are usually promoted. Also, fonts that are promoted differ

wildly in style compared to the average font. (iii) Consumers have different preferences over

shapes depending on the license type they purchase. Consumers prefer more conservative

shapes for web licenses and more experimental shapes for desktop license. Usually, web

13The product space may allow one to create alternative measures for product differentiation and variety.
14The image is from http://iotic.com/averia/. See also http://fontpro.com/averia-serif-libre-font-16583

where the font is available as a free font under the same name.
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Figure 11: Trends in (Weighted) Mean Distance of Purchased Fonts (for $25-35 and $35-45,
by license types)
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licenses are used in webpages, where legibility is important, while desktop license are used

in printed materials (e.g., posters, cards), where designers (as consumers) have more control

over the design environment.

6 Effects of Merger on Creative Product Differentia-

tion

In June 15th, 2014, one of the major font foundries called FontFont is acquired by Monotype,

which has been selling fonts from foundries it owns as well as third-party foundries. Using the

synthetic control method as our empirical strategy, we study the causal effect of this merger

on the change in the product differentiation decisions of the merging firm, i.e., FontFont. In

this market, the major channel for product differentiation is the design of font shapes. In

the presence of other competing foundries, this creative decision of a given foundry may be

affected by many factors. The merging foundry and the platform owner may reduce cost

and increase efficiency by the merger, in which case they can afford the creation of more

experimental products. They may concern cannibalization, i.e., competition among their

own products, in which case they again tend to increase product diversity. On the other

hand, if Monotype has a preemptive motive with the merger, it will crowd its products to

prevent entries. We empirically answer this question by using the embeddings we created as

the main ingredient in our synthetic control method.

In this analysis, the outcome of interest is the mean distance from Averia of all new fonts

created by a given foundry in a given period. This variable succinctly measures the creative

decision of product differentiation. Even before the merger, FontFont has sold its fonts in

MyFonts.com as a third party. We want to measure how the mean distance has changed by

the merger. The crucial step in order to recover the effect of merger that is causal, we need

to have a control group that shares similarity with the treatment group, i.e., FontFont, if it

were not for the merger. The challenge here is that there is only a single treated unit in the

treatment group and it is difficult to find a single untreated unit that matches the treated

unit. A naive average of a control group would also be a poor comparison unit. The synthetic

control method developed by Abadie and Gardeazabal (2003) and Abadie et al. (2010) is a

useful technique to overcome this challenge. The method essentially makes comparison of the

treated unit with a “synthesized treated unit” or a synthetic control unit from a weighted

average of the control group. Here, the weights are estimated by minimizing the distance

between the observed characteristics (including the outcome) of the treated unit and the

weighted average of the characteristics of the control group.
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Mean S.D. Min Max

Distance 0.42 0.10 0.24 0.73
Glyph Count 557.66 717.89 27.82 13,496
New Fonts 3.73 7.81 0.00 121.00
Sales ($1K) 601 1,886 0 24,636
Order Count 7,517 23,239 1 360,435

Price per Order ($) 92.24 94.62 1.60 678.07
Age (Half Year) 10.32 5.34 0.00 17.50

Table 3: Summary Statistics (embeddings variables omitted)

The advantage of our setting is that the embeddings contain rich information about

the design attributes of fonts that foundries created, from which the outcome variable is

constructed. This information turns out to be valuable in obtaining a comparable synthetic

control unit. For the control group that serves as the basis for constructing a synthetic control,

we use foundries whose merger status have not changed during the period we consider.

The panel data has bi-annual time series between 2012 and 2018 and cross-sectional

units are foundries. Table 3 shows the summary statistics for the variables (except the raw

embeddings) we use in the analysis. Glyph count is considered to be a good measure of the

quality of a font, which we use as an important control variable. The number of new fonts,

sales, number of orders, average price, and age of foundries introduced in that half year are

other control variables we use. In the data, we have one treated unit (FontFont) and 76

control units.

Figure 12 captures the main result of our causal analysis. The solid line in the left

panel plots the trend of the mean distance to Averia of fonts newly designed by FontFont

in a given period. Around the period where FontFont was merged, which is indicated as

a vertical line, the mean distance of the shape of FontFont’s fonts increased substantially.

This before and after comparison alone cannot recover the causal effect of the merger, since

other market conditions may have changed around this period. Comparing this trend with

the trend of the synthetic FontFont, depicted in a dashed line, removes possible confounding

factors. First, the two trends before the treatment appear to be close to each other. After

the merger, however, FontFont has produced more experimental fonts (i.e., fonts that are far

from the average shape) after the merger, relative to the trend of the synthetic control. We

report the estimates in Table 4.

To understand the virtue of our synthetic control method, we contrast the left panel with

the right panel in Figure 12. The latter depicts the trends of the treated unit and the naive

average of the control group. Inspecting the pre-treatment period in the right panel, the
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Figure 12: Trends of FontFont vs. Synthetic FontFont (left) and Trends of FontFont vs.
Naive Control Group (right)—Vertical Line: Time of Merger

Year (Before Merger) 2012/1 2012/2 2013/1 2013/2 2014/1 2014/2
Treatment effect -0.0037 0.0318 -0.0276 -0.0604 0.0216 0.0019

Year (After Merger) 2015/1 2015/2 2016/1 2016/2 2017/1 2017/2
Treatment effect 0.3420 0.1315 0.2256 -0.1089 -0.0390 -0.0443

Table 4: Treatment Effects (by half year before and after the merger)

naive average fails to mimic the trend of the treated.

Finally, Table 5 reports the treatment effects averaged over each year after the merger.

We also report their p-values using the permutation test by Abadie et al. (2010). Consistent

to Figure 12 (left), the short-run effect of the first year is significant whereas the effects in

the second and third years are not.

From this analysis, we conclude that the merger causes FontFont to explore a new territory

of the product space at least temporarily. That is, now as part of the parent organization,

Monotype, FontFont increases the visual variety in font design. Before the merger, Monotype

Years (After Merger) 2015/1–2015/2 2016/1–2016/2 2017/1–2017/2
Treatment Effect 0.2186 0.0682 -0.0195

p-Value 0.0132 0.5000 0.5526

Table 5: Treatment Effects Averages (by year after the merger)
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owned multiple foundries that produce fonts and sold them in its platform, MyFonts.com.

After the merger, Monotype may have incentives to diversify the product scope as the size

and efficiency of the firm has increased. It may also be the case that Monotype tries to

avoid cannibalization by spread apart its products, reducing competition of their own. Such

tendency disappears after two years, perhaps because the company has either successfully

foreclosed the market or found the strategy unprofitable. In the meantime, the synthetic

FontFont tries to be more adventurous in the font design about two years after Monotype

departs from conservative fonts. Since fonts with the same distance from Averia are not

necessarily close to each other, this behavior of the synthetic FontFont can be viewed as

either the increased competition with Monotype or a behavior to occupy other regions of the

product space avoiding the competition.

7 Conclusion

Certain policy questions are better answered by treating high-dimensional, unstructured

attributes as observables and attempting to solve the resulting dimensionality problem. As

a result, we propose to quantify the design oriented attributes of a product by constructing

a low-dimensional product space of these attributes. We use a modern convolutional neural

network to accomplish this task. We find that these attributes are correlated with font

designers and consumers perceptions by comparing the mutual information tags used to

describe the fonts with the neural network embeddings. We conduct two economic analyses.

We first analyze supply side and demand-side trends and find they are related to promotion

policies and license types. We then turn to a causal analysis to understand the effects of

merger on product differentiation. We find that the merger increases the product variety in

this market.

This paper motivates interesting directions for future research, some of which may require

a structural approach. For structural economic analyses, we envision a two-step approach

of using the embeddings: first construct a neural network embedding to reduce the dimen-

sion of the product image, and then include the embeddings in structural economic models.

Although we could use the neural network to directly predict economic variables, such as

demand and price, the neural network is not a causal model. As a result, its counterfac-

tual predictions are not as credible as a more traditional structural model. An alternative

structural approach would be to incorporate dimension reduction as part of the structural

estimation (Chernozhukov et al. (2018); Foster and Syrgkanis (2019)).

Using these structural approaches, we can continue answering economic questions related

to this market. Related to the economic analysis we conducted in this paper, we may view
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product differentiation as spatial competition. There is a close parallel between spatial

differentiation and the neural network embedding product space we constructed. Analogous

to Seim (2006) who studies the location choice of video rental stores, we can investigate the

relationship between design choices and local market power of the designers. We can also

study how third-party and in-house foundries differ in their product differentiation decisions.

One relevant policy question is the effect of the commission fee of third parties. In fact,

Monotype has changed the commission policy during the data period, which may serve as

key policy variation.

Alternatively, we may view product differentiation as intellectual property. Agents in this

industry are subject to license agreements, which aim to protect the originality of font shapes.

Heuristically this policy says that “one cannot produce fonts which shapes are substantially

similar to existing fonts.” Given the product space we characterized, one can interpret this

policy as imposing a ball centered around each font, preventing other productions within—

producing another font inside is considered as violation. Then, one can ask what the welfare

maximizing level of the policy (i.e., the optimal radius of the ball) would be and whether the

current level in the market is optimal or suboptimal.
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